2 resultados para Astronomical Photographic Plates

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Recent studies in animals have shown pronounced resorption of buccal bone plate after immediate implantation. The sectioning of experimental material for histologic evaluation of the bone plates could provide valuable information about the possible effect of bone exposure in periodontal and implant surgeries. Methods: Twenty-four incisors were collected from dogs. After decalcification, the blocks were immersed in paraffin and bucco-lingual histologic sections were examined under light microscope. Some sections were reserved for immunohistochemical analysis. Results: The bone density, the width of the bone plates, and the percentage of vessels presented in the periodontal ligament and periosteum were analyzed in the buccal and lingual bone plates, which were divided corono-apically into thirds. The buccal bone plates showed statistically higher bone density compared to the lingual bone plates in the coronal thirds. The width of both bone plates increased from the coronal to the apical third, but all the buccal thirds were significantly thinner compared to the lingual thirds. No statistically significant differences were found between the bone plates for the percentage of area occupied by the blood vessels in the periodontal ligament or periosteum. Conclusion: It is reasonable to conclude that the higher bone density, represented by the lower number of marrow spaces, in association with the thinner aspect of the buccal bone plates made them more fragile to absorb compared to the lingual bone plates, especially during mucoperiosteal procedures. J Periodontol 2017;82:872-877.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes 96- and 384-microzone plates fabricated in paper as alternatives to conventional multi-well plates fabricated in molded polymers. Paper-based plates are functionally related to plastic well plates, but they offer new capabilities. For example, paper-microzone plates are thin (similar to 180 mu m), require small volumes of sample (5 mu L per zone), and can be manufactured from inexpensive materials ($0.05 per plate). The paper-based plates are fabricated by patterning sheets of paper, using photolithography, into hydrophilic zones surrounded by hydrophobic polymeric barriers. This photolithography used an inexpensive formulation photoresist that allows rapid (similar to 15 min) prototyping of paper-based plates. These plates are compatible with conventional microplate readers for quantitative absorbance and fluorescence measurements. The limit of detection per zone loaded for fluorescence was 125 fmol for fluorescein isothiocyanate-labeled bovine serum albumin, and this level corresponds to 0.02 the quantity of analyte per well used to achieve comparable signal-to-noise in a 96-well plastic plate (using a solution of 25 nM labeled protein). The limits of detection for absorbance on paper was aproximately 50 pmol per zone for both Coomassie Brilliant Blue and Amaranth dyes; these values were 0.4 that required for the plastic plate. Demonstration of quantitative colorimetric correlations using a scanner or camera to image the zones and to measure the intensity of color, makes it possible to conduct assays without a microplate reader.