6 resultados para Astronomical Photographic Plates
em CaltechTHESIS
Resumo:
The dispersion of an isolated, spherical, Brownian particle immersed in a Newtonian fluid between infinite parallel plates is investigated. Expressions are developed for both a 'molecular' contribution to dispersion, which arises from random thermal fluctuations, and a 'convective' contribution, arising when a shear flow is applied between the plates. These expressions are evaluated numerically for all sizes of the particle relative to the bounding plates, and the method of matched asymptotic expansions is used to develop analytical expressions for the dispersion coefficients as a function of particle size to plate spacing ratio for small values of this parameter.
It is shown that both the molecular and convective dispersion coefficients decrease as the size of the particle relative to the bounding plates increase. When the particle is small compared to the plate spacing, the coefficients decrease roughly proportional to the particle size to plate spacing ratio. When the particle closely fills the space between the plates, the molecular dispersion coefficient approaches zero slowly as an inverse logarithmic function of the particle size to plate spacing ratio, and the convective dispersion coefficent approaches zero approximately proportional to the width of the gap between the edges of the sphere and the bounding plates.
Resumo:
We consider the radially symmetric nonlinear von Kármán plate equations for circular or annular plates in the limit of small thickness. The loads on the plate consist of a radially symmetric pressure load and a uniform edge load. The dependence of the steady states on the edge load and thickness is studied using asymptotics as well as numerical calculations. The von Kármán plate equations are a singular perturbation of the Fӧppl membrane equation in the asymptotic limit of small thickness. We study the role of compressive membrane solutions in the small thickness asymptotic behavior of the plate solutions.
We give evidence for the existence of a singular compressive solution for the circular membrane and show by a singular perturbation expansion that the nonsingular compressive solution approach this singular solution as the radial stress at the center of the plate vanishes. In this limit, an infinite number of folds occur with respect to the edge load. Similar behavior is observed for the annular membrane with zero edge load at the inner radius in the limit as the circumferential stress vanishes.
We develop multiscale expansions, which are asymptotic to members of this family for plates with edges that are elastically supported against rotation. At some thicknesses this approximation breaks down and a boundary layer appears at the center of the plate. In the limit of small normal load, the points of breakdown approach the bifurcation points corresponding to buckling of the nondeflected state. A uniform asymptotic expansion for small thickness combining the boundary layer with a multiscale approximation of the outer solution is developed for this case. These approximations complement the well known boundary layer expansions based on tensile membrane solutions in describing the bending and stretching of thin plates. The approximation becomes inconsistent as the clamped state is approached by increasing the resistance against rotation at the edge. We prove that such an expansion for the clamped circular plate cannot exist unless the pressure load is self-equilibrating.
Resumo:
The determination of the energy levels and the probabilities of transition between them, by the formal analysis of observed electronic, vibrational, and rotational band structures, forms the direct goal of all investigations of molecular spectra, but the significance of such data lies in the possibility of relating them theoretically to more concrete properties of molecules and the radiation field. From the well developed electronic spectra of diatomic molecules, it has been possible, with the aid of the non-relativistic quantum mechanics, to obtain accurate moments of inertia, molecular potential functions, electronic structures, and detailed information concerning the coupling of spin and orbital angular monenta with the angular momentum of nuclear rotation. The silicon fluori1e molecule has been investigated in this laboratory, and is found to emit bands whose vibrational and rotational structures can be analyzed in this detailed fashion.
Like silicon fluoride, however, the great majority of diatomic molecules are formed only under the unusual conditions of electrical discharge, or in high temperature furnaces, so that although their spectra are of great theoretical interest, the chemist is eager to proceed to a study of polyatomic molecules, in the hope that their more practically interesting structures might also be determined with the accuracy and assurance which characterize the spectroscopic determinations of the constants of diatomic molecules. Some progress has been made in the determination of molecule potential functions from the vibrational term values deduced from Raman and infrared spectra, but in no case can the calculations be carried out with great generality, since the number of known term values is always small compared with the total number of potential constants in even so restricted a potential function as the simple quadratic type. For the determination of nuclear configurations and bond distances, however, a knowledge of the rotational terms is required. The spectra of about twelve of the simpler polyatomic molecules have been subjected to rotational analyses, and a number of bond distances are known with considerable accuracy, yet the number of molecules whose rotational fine structure has been resolved even with the most powerful instruments is small. Consequently, it was felt desirable to investigate the spectra of a number of other promising polyatomic molecules, with the purpose of carrying out complete rotational analyses of all resolvable bands, and ascertaining the value of the unresolved band envelopes in determining the structures of such molecules, in the cases in which resolution is no longer possible. Although many of the compounds investigated absorbed too feebly to be photographed under high dispersion with the present infrared sensitizations, the location and relative intensities of their bands, determined by low dispersion measurements, will be reported in the hope that these compounds may be reinvestigated in the future with improved techniques.
Resumo:
The purpose of this thesis is to present new observations of thermal-infrared radiation from asteroids. Stellar photometry was performed to provide standards for comparison with the asteroid data. The details of the photometry and the data reduction are discussed in Part 1. A system of standard stars is derived for wavelengths of 8.5, 10.5 and 11.6 µm and a new calibration is adopted. Sources of error are evaluated and comparisons are made with the data of other observers.
The observations and analysis of the thermal-emission observations of asteroids are presented in Part 2. Thermal-emission lightcurve and phase effect data are considered. Special color diagrams are introduced to display the observational data. These diagrams are free of any model-dependent assumptions and show that asteroids differ in their surface properties.
On the basis of photometric models, (4) Vesta is thought to have a bolometric Bond albedo of about 0.1, an emissivity greater than 0.7 and a true radius that is close to the model value of 300^(+50)_(-30)km. Model albedos and model radii are given for asteroids 1, 2, 4, 5, 6, 7, 15, 19, 20, 27, 39, 44, 68, 80, 324 and 674. The asteroid (324) Bamberga is extremely dark with a model (~bolometric Bond) albedo in the 0.01 - 0.02 range, which is thought to be the lowest albedo yet measured for any solar-system body. The crucial question about such low-albedo asteroids is their number and the distribution of their orbits.
Resumo:
The Edge Function method formerly developed by Quinlan(25) is applied to solve the problem of thin elastic plates resting on spring supported foundations subjected to lateral loads the method can be applied to plates of any convex polygonal shapes, however, since most plates are rectangular in shape, this specific class is investigated in this thesis. The method discussed can also be applied easily to other kinds of foundation models (e.g. springs connected to each other by a membrane) as long as the resulting differential equation is linear. In chapter VII, solution of a specific problem is compared with a known solution from literature. In chapter VIII, further comparisons are given. The problems of concentrated load on an edge and later on a corner of a plate as long as they are far away from other boundaries are also given in the chapter and generalized to other loading intensities and/or plates springs constants for Poisson's ratio equal to 0.2
Resumo:
The problem in this investigation was to determine the stress and deflection patterns of a thick cantilever plate at various angles of sweepback.
The plate was tested at angles of sweepback of zero, twenty, forty, and sixty degrees under uniform shear load at the tip, uniformly distributed load and torsional loading.
For all angles of sweep and for all types of loading the area of critical stress is near the intersection of the root and trailing edge. Stresses near the leading edge at the root decreased rapidly with increase in angle of sweep for all types of loading. In the outer portion of the plate near the trailing edge the stresses due to the uniform shear and the uniformly distributed load did not vary for angles of sweep up to forty degrees. For the uniform shear and the uniformly distributed loads for all angles of sweep the area in which end effect is pronounced extends from the root to approximately three quarters of a chord length outboard of a line perpendicular to the axis of the plate through the trailing edge root. In case of uniform shear and uniformly distributed loads the deflections near the edge at seventy-five per cent semi-span decreased with increase in angle of sweep. Deflections near the trailing edge under the same loading conditions increased with increase in angle of sweep for small angles and then decreased at the higher angles of sweep. The maximum deflection due to torsional loading increased with increase in angle of sweep.