4 resultados para Ascidian Herdmania-momus
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The chemical investigation of the crude extract of an ascidian of the genus Didemnumled to the isolation of the modified diketopiperazine rodriguesines A (1) and (2) as a mixture of homologues, which could be identified by analysis of spectroscopic data including MS/MS experiments. The investigation of a second Didemnumsp. led to the isolation of N-acetyl-rodriguesine A (3) and N-acetyl-rodriguesine B (4). The absolute configuration of compounds 1and 2could be established by hydrolysis and Marfey's analysis and comparison with literature data reported for compound 3, previously obtained as a synthetic product. The mixture of 1and 2displayed moderate antibiotic activity against a clinical isolate of Streptococcus mutansand against S. mutansUA159 and Staphylococcus aureusATCC6538.
Resumo:
Chemical investigation of the methanolic extract of the ascidian Didemnum psammatodes has led to the identification of fourteen known compounds: three methyl esters (methyl myristate, methyl palmitate and methyl stearate), four steroids (cholesterol, campesterol, stigmasterol and beta-sitosterol), two fatty acids (palmitic acid and stearic acid), three glyceryl ethers {(1,2-propanediol, 3-(heptadecyloxy), batyl alcohol and 1,2-propanediol, 3-[(methyloctadecyl)oxy]) and two nucleosides (thymidine and 2`-deoxyguanosine). Their structures were proposed by NMR and comparison with literature data and GC analysis in comparison with authentic sample. The cytotoxic activity of these compounds was evaluated against human leukemia cell line panel using the MTT assay. The mixture of the three methyl esters was the most active group of compounds, showing antiproliferative and cytotoxic effects. Further studies on their mode of action suggest that these activities are connected with inhibition of DNA synthesis and induction of both necrosis and apoptosis. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Aldehyde dehydrogenases (ALDHs) catabolize toxic aldehydes and process the vitamin A-derived retinaldehyde into retinoic acid (RA), a small diffusible molecule and a pivotal chordate morphogen. In this study, we combine phylogenetic, structural, genomic, and developmental gene expression analyses to examine the evolutionary origins of ALDH substrate preference. Structural modeling reveals that processing of small aldehydes, such as acetaldehyde, by ALDH2, versus large aldehydes, including retinaldehyde, by ALDH1A is associated with small versus large substrate entry channels (SECs), respectively. Moreover, we show that metazoan ALDH1s and ALDH2s are members of a single ALDH1/2 clade and that during evolution, eukaryote ALDH1/2s often switched between large and small SECs after gene duplication, transforming constricted channels into wide opened ones and vice versa. Ancestral sequence reconstructions suggest that during the evolutionary emergence of RA signaling, the ancestral, narrow-channeled metazoan ALDH1/2 gave rise to large ALDH1 channels capable of accommodating bulky aldehydes, such as retinaldehyde, supporting the view that retinoid-dependent signaling arose from ancestral cellular detoxification mechanisms. Our analyses also indicate that, on a more restricted evolutionary scale, ALDH1 duplicates from invertebrate chordates (amphioxus and ascidian tunicates) underwent switches to smaller and narrower SECs. When combined with alterations in gene expression, these switches led to neofunctionalization from ALDH1-like roles in embryonic patterning to systemic, ALDH2-like roles, suggesting functional shifts from signaling to detoxification.
Resumo:
Individual fitness and the structure of marine communities are strongly affected by spatial competition. Among the most common space holders are the colonial ascidians, which have the ability to monopolize large areas of hard substrate, overgrowing most other competitors. The effects of competition on colony growth and on gonad production of the ascidian Didemnum perlucidum were studied in southeastern Brazil by experimentally removing surrounding competitors. Colonies of D, perlucidum competing for space exhibited a growth rate 9 times less than that of colonies that were competitor free. Among the colonies subject to competition, growth rates were unrelated to the percentage of colony border that was free of competitors. However, the identity of the competitor was important in the outcome of border contacts. At the beginning of the experiment, most border encounters of D. perlucidum were with solitary organisms, which in most cases were overgrown. These were progressively replaced by colonial ascidians and bryozoans, resulting mostly in stand-off interactions. Besides reducing asexual growth, spatial competition also affected female gonad production. Colonies free of competitors had a significantly higher proportion of zooids with ovaries. Thus, our findings show that spatial competition reduces both ascidian colony size and gonad production.