195 resultados para Alpha(2)delta Subunit
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Exercise training is known to promote relevant changes in the properties of skeletal muscle contractility toward powerful fibers. However, there are few studies showing the effect of a well-established exercise training protocol on Ca(2+) handling and redox status in skeletal muscles with different fiber-type compositions. We have previously standardized a valid and reliable protocol to improve endurance exercise capacity in mice based on maximal lactate steady-state workload (MLSSw). The aim of this study was to investigate the effect of exercise training, performed at MLSSw, on the skeletal muscle Ca(2+) handling-related protein levels and cellular redox status in soleus and plantaris. Male C57BL/6J mice performed treadmill training at MLSSw over a period of eight weeks. Muscle fiber-typing was determined by myosin ATPase histochemistry, citrate synthase activity by spectrophotometric assay, Ca(2+) handling-related protein levels by Western blot and reduced to oxidized glutathione ratio (GSH:GSSG) by high-performance liquid chromatography. Trained mice displayed higher running performance and citrate synthase activity compared with untrained mice. Improved running performance in trained mice was paralleled by fast-to-slow fiber-type shift and increased capillary density in both plantaris and soleus. Exercise training increased dihydropyridine receptor (DHPR) alpha 2 subunit, ryanodine receptor and Na(+)/Ca(2+) exchanger levels in plantaris and soleus. Moreover, exercise training elevated DHPR beta 1 subunit and sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) 1 levels in plantaris and SERCA2 levels in soleus of trained mice. Skeletal muscle GSH content and GSH:GSSG ratio was increased in plantaris and soleus of trained mice. Taken together, our findings indicate that MLSSw exercise-induced better running performance is, in part, due to increased levels of proteins involved in skeletal muscle Ca(2+) handling, whereas this response is partially dependent on specificity of skeletal muscle fiber-type composition. Finally, we demonstrated an augmented cellular redox status and GSH antioxidant capacity in trained mice.
Resumo:
The medial amygdaloid nucleus (MeA) is involved in the modulation of physiological and behavioral processes, as well as regulation of the autonomic nervous system. Moreover, MeA electrical stimulation evokes cardiovascular responses. Thus, as noradrenergic receptors are present in this structure, the present study tested the effects of local noradrenaline (NA) microinjection into the MeA on cardiovascular responses in conscious rats. Moreover, we describe the types of adrenoceptor involved and the peripheral mechanisms involved in the cardiovascular responses. Increasing doses of NA (3, 9, 27 or 45 nmol/100 nL) microinjected into the MeA of conscious rats caused dose-related pressor and bradycardic responses. The NA cardiovascular effects were abolished by local pretreatment of the MeA with 10 nmol/100 nL of the specific alpha(2)-receptor antagonist RX821002, but were not affected by local pretreatment with 10 nmol/100 nL of the specific alpha(1)-receptor antagonist WB4101. The magnitude of pressor response evoked by NA microinjected into the MeA was potentiated by intravenous pretreatment with the ganglion blocker pentolinium (5 mg/kg), and blocked by intravenous pretreatment with the selective V(1)-vasopressin antagonist dTyr(CH(2))(5)(Me)AVP (50 mu g/kg). In conclusion, our results show that microinjection of NA into the MeA of conscious rats activates local alpha(2)-adrenoceptors, evoking pressor and bradycardic responses, which are mediated by vasopressin release.
Resumo:
Background and purpose: We have previously shown that noradrenaline microinjected into the bed nucleus of stria terminalis (BST) elicited pressor and bradycardiac responses in unanaesthetized rats. In the present study, we investigated the subtype of adrenoceptors that mediates the cardiovascular response to noradrenaline microinjection into the BST. Experimental approach: Cardiovascular responses following noradrenaline microinjection into the BST of male Wistar rats were studied before and after BST pretreatment with different doses of the selective alpha(1)-adrenoceptor antagonist WB4101, the alpha(2)-adrenoceptor antagonist RX821002, the combination of WB4101 and RX821002, the non-selective beta-adrenoceptor antagonist propranolol, the selective beta(1)-adrenoceptor antagonist CGP20712 or the selective beta(2)-adrenoceptor antagonist ICI118,551. Key results: Noradrenaline microinjected into the BST of unanaesthetized rats caused pressor and bradycardiac responses. Pretreatment of the BST with different doses of either WB4101 or RX821002 only partially reduced the response to noradrenaline. However, the response to noradrenaline was blocked when WB4101 and RX821002 were combined. Pretreatment with this combination also shifted the resulting dose-effect curve to the left, clearly showing a potentiating effect of this antagonist combination. Pretreatment with different doses of either propranolol or CGP20712 increased the cardiovascular responses to noradrenaline microinjected into the BST. Pretreatment with ICI118,551 did not affect cardiovascular responses to noradrenaline. Conclusion and implications: The present results indicate that alpha(1) and alpha(2)-adrenoceptors mediate the cardiovascular responses to noradrenaline microinjected into the BST. In addition, they point to an inhibitory role played by the activation of local beta(1)-adrenoceptors in the cardiovascular response to noradrenaline microinjected into the BST.
Resumo:
Dynamic exercise evokes sustained blood pressure and heart rate (HR) increases. Although it is well accepted that there is a CNS mediation of cardiovascular adjustments during dynamic exercise, information on the role of specific CNS structures is still limited. The bed nucleus of the stria terminalis (BST) is involved in exercise-evoked cardiovascular responses in rats. However, the specific neurotransmitter involved in BST-related modulation of cardiovascular responses to dynamic exercise is still unclear. In the present study, we investigated the role of local BST adrenoceptors in the cardiovascular responses evoked when rats are submitted to an acute bout of exercise on a rodent treadmill. We observed that bilateral microinjection of the selective alpha 1-adrenoceptor antagonist WB4101 into the BST enhanced the HR increase evoked by dynamic exercise without affecting the mean arterial pressure (MAP) increase. Bilateral microinjection of the selective alpha 2-adrenoceptor antagonist RX821002 reduced exercise-evoked pressor response without changing the tachycardiac response. BST pretreatment with the nonselective beta-adrenoceptor antagonist propranolol did not affect exercise-related cardiovascular responses. BST treatment with either WB4101 or RX821002 did not affect motor performance in the open-field test, which indicates that effects of BST adrenoceptor antagonism in exercise-evoked cardiovascular responses were not due to changes in motor activity. The present findings are the first evidence showing the involvement of CNS adrenoceptors in cardiovascular responses during dynamic exercise. Our results indicate an inhibitory influence of BST alpha 1-adrenoceptor on the exercise-evoked HR response. Data also point to a facilitatory role played by the activation of BST alpha 2-adrenoceptor on the pressor response to dynamic exercise. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Adenosine Is known to modulate neuronal activity within the nucleus tractus solitarius (NTS). The modulatory effect of adenosine A, receptors (A(1R)) on alpha(2)-adrenoceptors (Adr(2R)) was evaluated using quantitative radioautography within NTS subnuclei and using neuronal culture of normotensive (WKY) and spontaneously hypertensive rats (SHR). Radioautography was used in a saturation experiment to measure Adr2R binding parameters (B(max), K(d)) In the presence of 3 different concentrations of N(6)-cyclopentyladenosine (CPA), an A(1R) agonist. Neuronal culture confirmed our radioautographic results. [(3)H]RX821002, an Adr(2R) antagonist, was used as a ligand for both approaches. The dorsomedial/dorsolateral subnucleus of WKY showed an increase in B(max) values (21%) Induced by 10 nmol/L of CPA. However, the subpostremal subnucleus showed a decrease in Kd values (24%) induced by 10 nmol/L of CPA. SHR showed the same pattern of changes as WKY within the same subnuclei; however, the modulatory effect of CPA was induced by I nmol/L (increased B(max), 17%; decreased K(d), 26%). Cell culture confirmed these results, because 10(-5) and 10(-7) mol/L of CPA promoted an Increase in [3H]RX821002 binding of WKY (53%) and SHR cells (48%), respectively. DPCPX, an AIR antagonist, was used to block the modulatory effect promoted by CPA with respect to Adr2R binding. In conclusion, our study shows for the first time an interaction between A(1R) that increases the binding of Adr2R within specific subnuclei of the NTS. This may be important In understanding the complex autonomic response induced by adenosine within the NTS. In addition, changes in interactions between receptors might be relevant to understanding the development of hypertension. (Hypertens Res 2008; 31: 2177-2186)
Resumo:
We report measurements of the nonlinear (NL) refractive index n(2) of lead-germanium films (LGFs) containing Cu and Cu(2)O nanoparticles (NPs). The thermally managed eclipse Z-scan technique with 150 fs pulses from a laser operating at 800 nm was used. The NL refractive index measured, n(2)=6.3x10(-12) cm(2)/W has electronic origin and the NL absorption coefficient alpha(2) is smaller than 660 cm/GW. The figure of merit n(2)/lambda alpha(2) is enhanced by more than two orders of magnitude in comparison with the result for the LGFs without the copper based NPs. (C) 2008 American Institute of Physics.
Resumo:
Context. TWA22 was initially regarded as a member of the TW Hydrae association (TWA). In addition to being one of the youngest (approximate to 8 Myr) and nearest (approximate to 20 pc) stars to Earth, TWA22 has proven to be very interesting after being resolved as a tight, very low-mass binary. This binary can serve as a very useful dynamical calibrator for pre-main sequence evolutionary models. However, its membership in the TWA has been recently questioned despite due to the lack of accurate kinematic measurements. Aims. Based on proper motion, radial velocity, and trigonometric parallax measurements, we aim here to re-analyze the membership of TWA22 to young, nearby associations. Methods. Using the ESO NTT/SUSI2 telescope, we observed TWA22 AB during 5 different observing runs over 1.2 years to measure its trigonometric parallax and proper motion. This is a part of a larger project measuring trigonometric parallaxes and proper motions of most known TWA members at a sub-milliarcsec level. HARPS at the ESO 3.6 m telescope was also used to measure the system's radial velocity over 2 years. Results. We report an absolute trigonometric parallax of TWA22 AB, pi = 57.0 +/- 0.7 mas, corresponding to a distance 17.5 +/- 0.2 pc from Earth. Measured proper motions of TWA 22AB are mu(alpha) cos(delta) = -175.8 +/- 0.8 mas/yr and mu delta = -21.3 +/- 0.8 mas/yr. Finally, from HARPS measurements, we obtain a radial velocity V(rad) = 14.8 +/- 2.1 km s(-1). Conclusions. A kinematic analysis of TWA22 AB space motion and position implies that a membership of TWA22 AB to known young, nearby associations can be excluded except for the beta Pictoris and TW Hydrae associations. Membership probabilities based on the system's Galactic space motion and/or the trace-back technique support a higher chance of being a member to the beta Pictoris association. Membership of TWA22 in the TWA cannot be fully excluded because of large uncertainties in parallax measurements and radial velocities and to the uncertain internal velocity dispersion of its members.
Resumo:
Evidence demonstrates that sympathetic nervous system (SNS) activation causes osteopenia via beta(2)-adrenoceptor (beta(2)-AR) signaling. Here we show that female mice with chronic sympathetic hyperactivity owing to double knockout of adrenoceptors that negatively regulate norepinephrine release, alpha(2A)-AR and alpha(2C)-AR(alpha(2A)/alpha(2C)-ARKO), present an unexpected and generalized phenotype of high bone mass with decreased bone resorption and increased formation. In alpha(2A)/alpha(2C)-ARKO versus wild-type (WT) mice, micro-computed tomographic (mu CT) analysis showed increased, better connected, and more plate-shaped trabeculae in the femur and vertebra and increased cortical thickness in the vertebra, whereas biomechanical analysis showed increased tibial and femoral strength. Tibial mRNA expression of tartrate-resistant acid phosphatase (TRACP) and receptor activator of NF-kappa B (RANK), which are osteoclast-related factors, was lower in knockout (KO) mice. Plasma leptin and brain mRNA levels of cocaine amphetamine-regulated transcript (CART), which are factors that centrally affect bone turnover, and serum levels of estradiol were similar between mice strains. Tibial beta(2)-AR mRNA expression also was similar in KO and WT littermates, whereas alpha(2A)-, alpha(2B)- and alpha(2C)-AR mRNAs were detected in the tibia of WT mice and in osteoblast-like MC3T3-E1 cells. By immunohistochemistry, we detected alpha(2A)-, alpha(2B)-, alpha(2C)- and beta(2)-ARs in osteoblasts, osteoclasts, and chondrocytes of 18.5-day-old mouse fetuses and 35-day-old mice. Finally, we showed that isolated osteoclasts in culture are responsive to the selective alpha(2)-AR agonist clonidine and to the nonspecific alpha-AR antagonist phentolamine. These findings suggest that beta(2)-AR is not the single adrenoceptor involved in bone turnover regulation and show that alpha(2)-AR signaling also may mediate the SNS actions in the skeleton. (c) 2011 American Society for Bone and Mineral Research.
Resumo:
Bueno CR Jr, Ferreira JC, Pereira MG, Bacurau AV, Brum PC. Aerobic exercise training improves skeletal muscle function and Ca(2+) handling-related protein expression in sympathetic hyperactivity-induced heart failure. J Appl Physiol 109: 702-709, 2010. First published July 1, 2010; doi: 10.1152/japplphysiol.00281.2010.-The cellular mechanisms of positive effects associated with aerobic exercise training on overall intrinsic skeletal muscle changes in heart failure (HF) remain unclear. We investigated potential Ca(2+) abnormalities in skeletal muscles comprising different fiber compositions and investigated whether aerobic exercise training would improve muscle function in a genetic model of sympathetic hyperactivity-induced HF. A cohort of male 5-mo-old wild-type (WT) and congenic alpha(2A)/alpha(2C) adrenoceptor knockout (ARKO) mice in a C57BL/6J genetic background were randomly assigned into untrained and trained groups. Exercise training consisted of a 8-wk running session of 60 min, 5 days/wk (from 5 to 7 mo of age). After completion of the exercise training protocol, exercise tolerance was determined by graded treadmill exercise test, muscle function test by Rotarod, ambulation and resistance to inclination tests, cardiac function by echocardiography, and Ca(2+) handling-related protein expression by Western blot. alpha(2A)/alpha(2C)ARKO mice displayed decreased ventricular function, exercise intolerance, and muscle weakness paralleled by decreased expression of sarcoplasmic Ca(2+) release-related proteins [alpha(1)-, alpha(2)-, and beta(1)-subunits of dihydropyridine receptor (DHPR) and ryanodine receptor (RyR)] and Ca(2+) reuptake-related proteins [sarco(endo) plasmic reticulum Ca(2+)-ATPase (SERCA) 1/2 and Na(+)/Ca(2+) exchanger (NCX)] in soleus and plantaris. Aerobic exercise training significantly improved exercise tolerance and muscle function and reestablished the expression of proteins involved in sarcoplasmic Ca(2+) handling toward WT levels. We provide evidence that Ca(2+) handling-related protein expression is decreased in this HF model and that exercise training improves skeletal muscle function associated with changes in the net balance of skeletal muscle Ca(2+) handling proteins.
Resumo:
Microemulsion electrokinetic capillary chromatography has been successfully applied to the separation and determination of water-soluble vitamins (thiamine hydrochloride, riboflavin, niacin, pyridoxine hydrochloride, folic acid, cobalamin, ascorbic acid) and a fat-soluble vitamin (alpha-tocopherol acetate). The optimal microemulsion buffer contained sodium dodecylsulfate (SDS) as surfactant, butan-1-ol as the co-surfactant, ethyl acetate as the oil and pH 9.2 tetraborate buffer, modified with 15% (v/v) 2-propanol. UV detection at 214 nm gave adequate sensitivity without interference from sample excipients. Under the optimized conditions, the vitamins were baseline separated in less than 7 min. Analytical curves of peak area versus concentration presented coefficients of determination (R (2) ) > 0.99, acceptable limits of quantification between 8.40 and 16.23 mu g mL(-1) were obtained. Vitamin levels in liquid formulation were quantified with intra-day precision better than 0.99% RSD for migration time and 1.19% RSD for peak area ratio. Recoveries ranged between 98.7 and 101.7%. The method was considered appropriate for rapid and routine analysis.
Resumo:
In previous studies, we determined that beta 1 integrins from human colon tumors have elevated levels of alpha 2-6 sialylation, a modification added by beta-galactosamide alpha-2,6-sialyltranferase I (ST6Gal-I). Intriguingly, the beta 1 integrin is thought to be a ligand for galectin-3 (gal-3), a tumor-associated lectin. The effects of gal-3 are complex; intracellular forms typically protect cells against apoptosis through carbohydrate-independent mechanisms, whereas secreted forms bind to cell surface oligosaccharides and induce apoptosis. In the current study, we tested whether alpha 2-6 sialylation of the beta 1 integrin modulates binding to extracellular gal-3. Herein we report that SW48 colonocytes lacking alpha 2-6 sialylation exhibit beta 1 integrin-dependent binding to gal-3-coated tissue culture plates; however, binding is attenuated upon forced expression of ST6Gal-I. Removal of alpha 2-6 sialic acids from ST6Gal-I expressors by neuraminidase treatment restores gal-3 binding. Additionally, using a blot overlay approach, we determined that gal-3 binds directly and preferentially to unsialylated, as compared with alpha 2-6-sialylated, beta 1 integrins. To understand the physiologic consequences of gal-3 binding, cells were treated with gal-3 and monitored for apoptosis. Galectin-3 was found to induce apoptosis in parental SW48 colonocytes ( unsialylated), whereas ST6Gal-I expressors were protected. Importantly, gal-3-induced apoptosis was inhibited by function blocking antibodies against the beta 1 subunit, suggesting that beta 1 integrins are critical transducers of gal-3-mediated effects on cell survival. Collectively, our results suggest that the coordinate up-regulation of gal-3 and ST6Gal-I, a feature that is characteristic of colon carcinoma, may confer tumor cells with a selective advantage by providing a mechanism for blockade of the pro-apoptotic effects of secreted gal-3.
Resumo:
The bed nucleus of stria terminalis (BST) has a tonic modulating role on the baroreflex parasympathetic component. In the present study, we verified that local BST-adrenoceptors modulate baroreflex-evoked bradycardiac responses in unanesthetized rats. Bilateral microinjection of the selective alpha(1)-adrenoceptor antagonist WB4101 (15 nmol/100 nL) into the BST increased the gain of reflex bradycardia in response to mean arterial pressure increases caused by intravenous (i.v.) infusion of phenylephrine, suggesting that BST alpha(1)-adrenoceptors modulate baroreflex bradycardiac response. Bilateral microinjection of either the selective alpha(2)-adrenoceptor antagonist RX821002 (15 nmol/100 nL) or the non-selective beta-adrenoceptor antagonist propranolol (15 nmol/100 nL) into the BST had not affected baroreflex bradycardia. Animals were pretreated intravenously with the cholinergic muscarinic receptor antagonist homatropine methyl bromide (HMB, 1.5 mg/Kg) to test the hypothesis that activation of alpha(1)-adrenoceptors in the BST would modulate the baroreflex parasympathetic component. Baroreflex bradycardiac responses evoked before and after BST treatment with WB4101 were no longer different when rats were pretreated with HMB. These results suggest that parasympathetic activation accounts for the effects saw after BST pharmacological manipulation and ruling out the possibility of a sympathetic withdraw. In conclusion, our data point out that local alpha(1)-adrenoceptors mediate the BST tonic influence on the baroreflex bradycardiac response modulating parasympathetic cardiac activity. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The insular cortex (IC) has been reported to modulate the cardiac parasympathetic activity of the baroreflex in unanesthetized rats. However, which neurotransmitters are involved in this modulation is still unclear. In the present study, we evaluated the possible involvement of local IC-noradrenergic neurotransmission in modulating reflex bradycardiac responses. Bilateral microinjection of the selective alpha(1)-adrenoceptor antagonist WB4101 (15 nmol/100 nL), into the IC of male Wistar rats, increased the gain of reflex bradycardia in response to mean arterial pressure (MAP) increases evoked by intravenous infusion of phenylephrine. However, bilateral microinjection of equimolar doses of either the selective alpha(2)-adrenoceptor antagonist RX821002 or the non-selective beta-adrenoceptor antagonist propranolol into the IC did not affect the baroreflex response. No effects were observed in basal MAP or heart rate values after bilateral microinjection of noradrenergic antagonists into the IC, thus suggesting no tonic influence of IC-noradrenergic neurotransmission on resting cardiovascular parameters. In conclusion, these data provide evidence that local IC-noradrenergic neurotransmission has an inhibitory influence on baroreflex responses to blood pressure increase evoked by phenylephrine infusion through activation of alpha(1)-adrenoceptors. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The identification of early markers that predict the response to anti-tuberculosis treatment would facilitate evaluation of new drugs and improve patient management. This study aimed to determine whether selected acute phase proteins and micronutrients measured at the time of diagnosis and during the first weeks of treatment could predict treatment responses during the 2-month standard intensive phase of therapy. For this purpose, alpha 1-antitrypsin, alpha 1-acid gtycoprotein, alpha 2-macroglobutin, C-reactive protein, C3, C4, zinc, copper and selenium concentrations were measured in Brazilian patients with smear-positive tuberculosis at the time of diagnosis and 1, 3, 5 and 8 weeks after initiation of therapy. Patients were classified into fast (n = 29), intermediate (n = 18) and slow responders (n = 10) if they were smear-negative at 3, 5 or 8 weeks of treatment. alpha 1-acid gtycoprotein on enrolment and 1 week of treatment, alpha 1-antitrypsin at week 1 and C-reactive protein and C3 after 3 weeks of therapy were higher in slow responders than in fast responders. alpha 1-antitrypsin and alpha 1-acid glycoprotein may be helpful in predicting treatment response at the time of initiation of therapy, and could be used as early markers to identify patients with an increased likelihood of treatment failure. (C) 2008 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.
Resumo:
The neuromuscular disorders are a heterogeneous group of genetic diseases, caused by mutations in genes coding sarcolemmal, sarcomeric, and citosolic muscle proteins. Deficiencies or loss of function of these proteins leads to variable degree of progressive loss of motor ability. Several animal models, manifesting phenotypes observed in neuromuscular diseases, have been identified in nature or generated in laboratory. These models generally present physiological alterations observed in human patients and can be used as important tools for genetic, clinic, and histopathological studies. The mdx mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD). Although it is a good genetic and biochemical model, presenting total deficiency of the protein dystrophin in the muscle, this mouse is not useful for clinical trials because of its very mild phenotype. The canine golden retriever MD model represents a more clinically similar model of DMD due to its larger size and significant muscle weakness. Autosomal recessive limb-girdle MD forms models include the SJL/J mice, which develop a spontaneous myopathy resulting from a mutation in the Dysferlin gene, being a model for LGMD2B. For the human sarcoglycanopahties (SG), the BIO14.6 hamster is the spontaneous animal model for delta-SG deficiency, whereas some canine models with deficiency of SG proteins have also been identified. More recently, using the homologous recombination technique in embryonic stem cell, several mouse models have been developed with null mutations in each one of the four SG genes. All sarcoglycan-null animals display a progressive muscular dystrophy of variable severity and share the property of a significant secondary reduction in the expression of the other members of the sarcoglycan subcomplex and other components of the Dystrophin-glycoprotein complex. Mouse models for congenital MD include the dy/dy (dystrophia-muscularis) mouse and the allelic mutant dy(2J)/dy(2J) mouse, both presenting significant reduction of alpha 2-laminin in the muscle and a severe phenotype. The myodystrophy mouse (Large(myd)) harbors a mutation in the glycosyltransferase Large, which leads to altered glycosylation of alpha-DG, and also a severe phenotype. Other informative models for muscle proteins include the knockout mouse for myostatin, which demonstrated that this protein is a negative regulator of muscle growth. Additionally, the stress syndrome in pigs, caused by mutations in the porcine RYR1 gene, helped to localize the gene causing malignant hypertermia and Central Core myopathy in humans. The study of animal models for genetic diseases, in spite of the existence of differences in some phenotypes, can provide important clues to the understanding of the pathogenesis of these disorders and are also very valuable for testing strategies for therapeutic approaches.