3 resultados para Alkaline protease gene
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Dental pulp cells can differentiate toward an odontoblastic phenotype to produce reparative dentin beneath caries lesions. However, the mechanisms involved in pulp cell differentiation under pro-inflammatory stimuli have not been well-explored. Thus, we hypothesized that the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) could be a mediator involved in dental pulp cell differentiation toward an odontoblastic phenotype. We observed that TNF-alpha-challenged pulp cells exhibited increased mineralization and early and increased expression of dentin phosphoprotein (DPP), dentin sialoprotein (DSP), dentin matrix protein-1, and osteocalcin during a phase of reduced matrix metalloproteinase (MMP) expression. We investigated whether these events were related and found that p38, a mitogen-activated protein kinase, differentially regulated MMP-1 and DSP/DPP expression and mediated mineralization upon TNF-alpha treatment. These findings indicate that TNF-alpha stimulates differentiation of dental pulp cells toward an odontoblastic phenotype via p38, while negatively regulating MMP-1 expression.
Resumo:
Laryngeal squamous cell carcinoma is very common in head and neck cancer, with high mortality rates and poor prognosis. In this study, we compared expression profiles of clinical samples from 13 larynx tumors and 10 non-neoplastic larynx tissues using a custom-built cDNA microarray containing 331 probes for 284 genes previously identified by informatics analysis of EST databases as markers of head and neck tumors. Thirty-five genes showed statistically significant differences (SNR >= 11.01, p <= 0.001) in the expression between tumor and non-tumor larynx tissue samples. Functional annotation indicated that these genes are involved in cellular processes relevant to the cancer phenotype, such as apoptosis, cell cycle, DNA repair, proteolysis, protease inhibition, signal transduction and transcriptional regulation. Six of the identified transcripts map to intronic regions of protein-coding genes and may comprise non-annotated exons or as yet uncharacterized long ncRNAs with a regulatory role in the gene expression program of larynx tissue. The differential expression of 10 of these genes (ADCY6, AES, AL2SCR3, CRR9, CSTB, DUSP1, MAP3K5, PLAT, UBL1 and ZNF706) was independently confirmed by quantitative real-time RT-PCR. Among these, the CSTB gene product has cysteine protease inhibitor activity that has been associated with an antimetastatic function. Interestingly, CSTB showed a low expression in the tumor samples analyzed (p<0.0001). The set of genes identified here contribute to a better understanding of the molecular basis of larynx cancer, and provide candidate markers for improving diagnosis, prognosis and treatment of this carcinoma.
Resumo:
Spodoptera frugiperda beta-1,3-glucanase (SLam) was purified from larval midgut. It has a molecular mass of 37.5 kDa, an alkaline optimum pH of 9.0, is active against beta-1,3-glucan (laminarin), but cannot hydrolyze yeast beta-1,3-1,6-glucan or other polysaccharides. The enzyme is an endoglucanase with low processivity (0.4), and is not inhibited by high concentrations of substrate. In contrast to other digestive beta-1,3-glucanases from insects, SLam is unable to lyse Saccharomyces cerevisae cells. The cDNA encoding SLam was cloned and sequenced, showing that the protein belongs to glycosyl hydrolase family 16 as other insect glucanases and glucan-binding proteins. Multiple sequence alignment of beta-1,3-glucanases and beta-glucan-binding protein supports the assumption that the beta-1,3-glucanase gene duplicated in the ancestor of mollusks and arthropods. One copy originated the derived beta-1,3-glucanases by the loss of an extended N-terminal region and the beta-glucan-binding proteins by the loss of the catalytic residues. SLam homology modeling suggests that E228 may affect the ionization of the catalytic residues, thus displacing the enzyme pH optimum. SLam antiserum reacts with a single protein in the insect midgut. Immunocytolocalization shows that the enzyme is present in secretory vesicles and glycocalyx from columnar cells. (C) 2010 Elsevier Ltd. All rights reserved.