104 resultados para AUSTENITIC STAINLESS-STEEL

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims to study evolution of increase, distribution and classification of pits in 310S austenitic stainless steels obtained in the state as-received and heat-treated under different exposure times in saline. This work applicability has been based on a technique development for morphologic characterization of localized corrosion associated with description aspects of shapes, size and population-specific parameters. Methodology has been consisted in the following steps: specimens preparation, corrosion tests via salt spray in different conditions, microstructural analysis, pits profiles analysis and images analysis, digital processing and image analysis in order to characterize the pits distribution, morphology and size. Results obtained in digital processing and profiles image analysis have been subjected to statistical analysis using median as parameter in the alloy as received and treated. The alloy as received displays the following morphology: hemispheric pits> transition region A> transition region B> irregular> conic. The pits amount in the treated alloy at each exposure time is: transition region B> hemispherical> transition region A> conic> irregular.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High temperature gas nitrided AISI 304L austenitic stainless steel containing 0.55 wt% N in solid solution, was corrosion, erosion and corrosion-erosion tested in a jet-like device, using slurry composed of 3.5% NaCl and quartz particles. Scanning electron microscopy analysis of the damaged surfaces, mass loss measurements and electrochemical test results were used to understand the effect of nitrogen on the degradation mechanisms. Increasing the nitrogen content improved the corrosion, erosion and corrosion-erosion resistance of the AISI 304L austenitic stainless steel. Smoother wear mark contours observed on the nitrided surfaces indicate a positive effect of nitrogen on the reduction of the corrosion-erosion synergism. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high nitrogen austenitic stainless steel (0.9wt% N) and an ordinary 304 austenitic stainless steel were submitted to cavitation-erosion tests in a vibratory apparatus operating at a frequency of 20 kHz. The high nitrogen stainless steel was obtained by high temperature gas nitriding a 1-mm thick strip of an UNS 31803 duplex stainless steel. The 304 austenitic stainless steel was used for comparison purposes. The specimens were characterized by scanning electron microscopy and Electron Back Scatter Diffraction. The surface of the cavitation damaged specimens was analyzed trying to find out the regions where cavitation damage occurred preferentially. The distribution of sites where cavitation inception occurred was extremely heterogeneous, concentrating basically at (i) slip lines inside some grains and (ii) Sigma-3 coincidence site lattice (CSL) boundaries (twin boundaries). Furthermore, it was observed that the CE damage spread faster inside those grains which were more susceptible to damage incubation. The damage heterogeneity was addressed to plasticity anisotropy. Grains in which the crystallographic orientation leads to high resolved shear stress show intense damage at slip lines. Grain boundaries between grains with large differences in resolved shear stress where also intensely damaged. The relationship between crystallite orientation distributions, plasticity anisotropy and CE damage mechanisms are discussed. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ti(6)Al(4)V thin films were grown by magnetron sputtering on a conventional austenitic stainless steel. Five deposition conditions varying both the deposition chamber pressure and the plasma power were studied. Highly textured thin films were obtained, their crystallite size (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Austenitic stainless steels cannot be conventionally nitrided at temperatures near 550 degrees C due to the intense precipitation of chromium nitrides in the diffusion zone. The precipitation of chro-mium nitrides increases the hardness but severely impairs corrosion resistance. Plasma nitriding allows introducing nitrogen in the steel at temperatures below 450 degrees C, forming pre-dominantly expanded austenite (gamma(N)), with a crystalline structure best represented by a special triclin-ic lattice, with a very high nitrogen atomic concentration promoting high compressive residual stresses at the surface, increasing substrate hardness from 4 GPa up to 14 GPa on the nitrided case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuel distribution uses 304 stainless steel containers for the storage of biofuels, however there are few reports in the literature about the corrosive aspects this. steel in biodiesel. The objective of this research is to study the corrosive behavior of 304 austenitic stainless steel in the presence of biodiesel, unwashed and washed, with aqueous solutions of citric, oxalic, acetic and ascorbic acids 0,01 mol L(-1), and compare with results obtained for the copper (ASTM D130). The employedtechniques were: atomic absorption spectrometry (AAS) and optical microscopy (OM). The results of EA A showed a low rate of corrosion for the stainless steel, the alloys elements studied were Cr, Ni and Fe, the highest rate was observed for the chrome, 1.78 ppm / day in biodiesel with or without washing. The OM of the 304 steel, when compared with that of copper has a low corrosion rate in the 304 steel/biodiesel system. Not with standing, this demonstrates that not only the 304 steel, but also the copper corrodes in biodiesel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of bovine serum albumin (BSA) on the anodic dissolution of chromium present in UNS S31254 stainless steel (SS) in 0.15 mol L-1 NaCl at 37.0 +/- 0.5 degrees C has been studied, using anodic potentiostatic polarization curves and optical emission spectroscopy. Electrochemical results have shown that BSA has little effect on the transpassivation potential (E-T) and on the passivation current density values. However on the passivation range, BSA diminishes the intensity of the anodic wave seen at about E=750mV versus SCE attributed to Cr(III)/Cr(VI) oxidation. Optical emission spectroscopy results have shown that BSA prevents the anodic dissolution of chromium to occur and minimizes iron dissolution above the transpassivation potential (E=1160 mV versus SCE). (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several studies have shown that austenitic stainless steels are suitable for use in the final phases of orthodontic treatments, such as finishing and retention. These steels demonstrate appropriate mechanical properties, such as high ultimate tensile strength and good corrosion resistance. A new class of materials, the austenic-ferritic stainless steels, is substituting for austenitic stainless steels in several industrial applications where these properties are necessary. This work supports the hypothesis that orthodontic wires of austenic-ferritic stainless steels can replace austenitic stainless steels. The advantages are cost reduction and decrease of the nickel hypersensitivity effect in patients undergoing orthodontic treatments. The object of this study was to evaluate wires of austenitic-ferritic stainless steel SEW 410 Nr. 14517 (Cr26Ni6Mo3Cu3) produced by cold working through rolling and drawing processes. Tests were performed to evaluate the ultimate tensile strength, hardness, ductility, and formability. In accordance with technical standards the wires exhibited ultimate tensile strength and ductility suitable for orthodontic clinical applications. These austenitie-ferritic wires can be an alternative to substitute the common commercial wires of austenic stainless steels with the advantage of decreasing the nickel content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The superiority of superaustenitic stainless steel (SASS) lies in its good weldability and great resistance to stress corrosion and pitting, because of its higher chromium, molybdenum, and nitrogen contents, when compared to general stainless steels. However, some of its applications are limited by very poor wear behavior. Plasma-nitriding is a very effective treatment for producing wear resistant and hard surface layers on stainless steels without compromising the corrosion resistance. In this work, UNS S31254 SASS samples were plasma-nitrided at three different temperatures (400, 450, and 500 degrees C), under a pressure of 500 Pa, for 5 h, in order to verify the influence of the temperature on the morphology, wear, and corrosion behavior of the modified surface layers. The plasma-nitrided samples were analyzed by means of optical microscopy, micro-hardness. X-ray diffraction, wear, and corrosion tests. Wear tests were conducted in a fixed ball micro-wear machine and corrosion behavior was carried out in natural sea water by means of potentiodynamic polarization curves. For the sample which was plasma-nitrided at 400 degrees C, only the expanded austenite phase was observed, and for the treatments performed at 450 and 500 degrees C, chromium nitrides (CrN and Cr(2)N) were formed in addition to the expanded austenite. Wear volume and Knoop surface hardness increased as the plasma-nitriding temperature increased. Higher wear rates were observed at high temperatures, probably due to the increment on layer fragility. The sample modified at 400 degrees C exhibited the best corrosion behavior among all the plasma-nitriding conditions. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Austenitic stainless steels cannot be conventionally surface treated at temperatures close to 550 degrees C due to intense precipitation of nitrides or carbides. Plasma carburizing allows introducing carbon in the steel at temperatures below 500 degrees C without carbide precipitation. Plasma carburizing of AISI 316L was carried out at 480 degrees C and 400 degrees C, during 20 h, using CH(4) as carbon carrier gas. The results show that carbon expanded austenite (gamma(c)), 20 mu m in depth, was formed on the surface after the 480 degrees C treatment. Carbon expanded austenite (gamma(c)), 8 mu m in depth, was formed on the surface after the 400 degrees C treatment. DRX results showed that the austenitic FCC lattice parameter increases from 0.358 nm to 0.363 nm for the 400 degrees C treatment and to 0.369 nm for the 480 degrees C treatment, giving an estimation of circa 10 at.% carbon content for the latter. Lattice distortion, resulting from the expansion and the associated compressive residual stresses increases the surface hardness to 1040 HV(0.025). Micro-scale tensile tests were conducted on specimens prepared with the conditions selected above, which has indicated that the damage imposed to the expanded austenite layer was more easily related to each separated grain than to the overall macro-scale stresses imposed by the tensile test. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A duplex surface treatment consisting of High Temperature Gas Nitriding (HTGN) followed by Low Temperature Plasma Nitriding (LTPN) was carried out in an UNS S31803 duplex stainless steel. The HTGN treatment was intended to produce a relatively thick and hard fully austenitic layer giving mechanical support to the thinner and much harder expanded austenite layer. HTGN was performed at 1200 degrees C for 3 h, in a 0.1 MPa N(2) atmosphere while LTPN, was carried out in a 75% N(2) + 25% H(2) atmosphere, at 400 degrees C for 12 h, under a 250 Pa pressure, and 450 V. An expanded austenite gamma(N) layer, 2.3 mu m thick, 1500 HVO.025 hard, was formed on top of a 100 mu m thick, 330 HV 0.1 hard, fully austenitic layer, containing 0.9 wt% N. For comparison purposes LTPN was carried out with UNS S30403 stainless steel specimens obtaining a 4.0 mu m thick, 1500 HV 0.025 hard, expanded austenite layer formed on top of a fully austenitic matrix having 190 HV 0.1. The nitrided specimens were tested in a 20 kHz vibratory cavitation-erosion testing equipment. Comparison between the duplex treated UNS S31803 steel and the low temperature plasma nitrided UNS S30403 steel, resulted in incubation times almost 9 times greater. The maximum cavitation wear rate of the LTPN UNS S30403 was 5.5 g/m(2)h, 180 times greater than the one measured for the duplex treated UNS S31803 steel. The greater cavitation wear resistance of the duplex treated UNS S31803 steel, compared to the LTPN treated UNS S30403 steel was explained by the greater mechanical support the fully austenitic, 330 HV 0.1 hard, 100 mu m layer gives to the expanded austenite layer formed on top of the specimen after LTPN. A strong crystallographic textured surface, inherited from the fully austenitic layer formed during HTGN, with the expanded austenite layer showing {101} crystallographic planes//surface contributed also to improve the cavitation resistance of the duplex treated steel. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Specimens of a UNS S31803 steel were submitted to high temperature gas nitriding and then to vibratory pitting wear tests. Nitrided samples displayed fully austenitic microstructures and 0.9 wt. % nitrogen contents. Prior to pitting tests, sample texture was characterized by electron backscattering diffraction, EBSD. Later on, the samples were tested in a vibratory pit testing equipment using distilled water Pitting tests were periodically interrupted to evaluate mass loss and to characterize the surface wear by SEM observations. At earlier pit erosion, stages intense and highly heterogeneous plastic deformation inside individual grains was observed. Later on, after the incubation period, mass loss by debris detachment was observed. Initial debris micro fracturing was addressed to low cycle fatigue. Damage started at both sites, inside the grains and grain boundaries. The twin boundaries were the most prone to mass-loss incubation. Grains with (101) planes oriented near parallel to the sample surface displayed higher wear resistance than grains with other textures. This was attributed to lower resolved stresses for plastic deformation inside the grains with (101)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polarization measurements were conducted to monitor the corrosion behavior of superduplex stainless steel ASTM A995M-Gr.SA/EN 10283-Mat#1.4469(GX2CrNiMo26-7-4) when exposed to a) an electrolyte containing 22,700 parts per million (ppm) of chloride ions at seven different temperatures and b) an electrolyte at 25 GC and different chloride ion concentrations (5800, 22,700, 58,000 and 80,000 ppm of Cl(-)). The polarization curves indicate that the passive films formed are only slightly affected by NaCl concentration, but the pitting potential decreases drastically increasing the temperature, in particular >60 degrees C. The image analysis of the microstructure after potentiodynamic polarization showed that the pitting number and size vary in function of the temperature of the tested medium. Nyquist diagrams were determined by electrochemical impedance spectroscopy to characterize the resistance of the passive layer. According to Nyquist plots, the arc polarization resistance decreases increasing the temperature due to a catalytic degradation of the oxide passive films. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Until now the martensitic stainless steel type AISI-420 is widely used in the manufacture of surgical implements. These implements present premature corrosion problems identified after cleaning, sterilization and cutting edge loss and/or rupture during the surgical processes.. This study evaluates the steel as to the chemical composition, hardness, microstructure and pitting corrosion resistance in a solution of enzyme detergent diluted in water by anodic cyclic polarization. This mixture is used in the cleaning of surgical implements that are submerged in this solution for 2 h before cleaning and sterilization. The results show steels with martensite microstructures in the ferrite phase, together with impurities. These presented low pitting potential values in compariston to steels with a fully martensitic microstructure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solution annealed and water quenched duplex and super duplex stainless steels are thermodynamically metastable systems at room temperature. These systems do not migrate spontaneously to a thermodynamically stable condition because an energy barrier separates the metastable and stable states. However, any heat input they receive, for example through isothermal treatment or through prolonged exposure to a voltaic arc in the welding process, cause them to reach a condition of stable equilibrium which, for super duplex stainless steels, means precipitation of intermetallic and carbide phases. These phases include the sigma phase, which is easily identified from its morphology, and its influence on the material`s impact strength. The purpose of this work was to ascertain how 2-hour isothermal heat treatments at 920 degrees C and 980 degrees C affect the microstructure of ASTM A890/A890M GR 6A super duplex stainless steel. The sigma phase morphologies were found to be influenced by these two aging temperatures, with the material showing a predominantly lacy microstructure when heat treated at 920 degrees C and block-shaped when heat treated at 980 degrees C. (C) 2009 Elsevier Inc. All rights reserved.