8 resultados para ASYMMETRIC DIVISION

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The leaf is considered the most important vegetative organ of tank epiphytic bromeliads due to its ability to absorb and assimilate nutrients. However, little is known about the physiological characteristics of nutrient uptake and assimilation. In order to better understand the mechanisms utilized by some tank epiphytic bromeliads to optimize the nitrogen acquisition and assimilation, a study was proposed to verify the existence of a differential capacity to assimilate nitrogen in different leaf portions. The experiments were conducted using young plants of Vriesea gigantea. A nutrient solution containing NO(3)(-)/NH(4)(+) or urea as the sole nitrogen source was supplied to the tank of these plants and the activities of urease, nitrate reductase (NR), glutamine synthetase (GS) and glutamate dehydrogenase (NADH-GDH) were quantified in apical and basal leaf portions after 1, 3, 6, 9, 12, 24 and 48 h. The endogenous ammonium and urea contents were also analyzed. Independent of the nitrogen sources utilized, NR and urease activities were higher in the basal portions of leaves in all the period analyzed. On the contrary. GS and GDH activities were higher in apical part. It was also observed that the endogenous ammonium and urea had the highest contents detected in the basal region. These results suggest that the basal portion was preferentially involved in nitrate reduction and urea hydrolysis, while the apical region could be the main area responsible for ammonium assimilation through the action of GS and GDH activities. Moreover, it was possible to infer that ammonium may be transported from the base, to the apex of the leaves. In conclusion, it was suggested that a spatial and functional division in nitrogen absorption and NH(4)(+) assimilation between basal and apical leaf areas exists, ensuring that the majority of nitrogen available inside the tank is quickly used by bromeliad`s leaves. (C) 2011 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We construct indecomposable and noncrossed product division algebras over function fields of connected smooth curves X over Z(p). This is done by defining an index preserving morphism s: Br(<(K(X))over cap>)` --> Br(K(X))` which splits res : Br(K (X)) --> Br(<(K(X))over cap>), where <(K(X))over cap> is the completion of K (X) at the special fiber, and using it to lift indecomposable and noncrossed product division algebras over <(K(X))over cap>. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asymmetric emission profiles of the stereoisomers of plant-derived volatile organic compounds vary with season, geography, plant type, and stress factors. After oxidation of these compounds in the atmosphere, the low-vapor pressure products ultimately contribute strongly to the particle-phase material of the atmosphere. In order to explore the possibility of stereochemical transfer to atmospheric aerosol particles during the oxidation of biogenic volatile organic compounds, second-order coherent vibrational spectra were recorded of the particle-phase organic material produced by the oxidation of different stereoisomeric mixes of alpha-pinene. The spectra show that the stereochemical configurations are not scrambled but instead are transferred from the gas-phase molecular precursors to the particle-phase molecules. The spectra also show that oligomers formed in the particle phase have a handed superstructure that depends strongly and nonlinearly on the initial stereochemical composition of the precursors. Because the stereochemical mix of the precursors for a material can influence the physical and chemical properties of that material, our findings suggest that chirality is also important for such properties of plant-derived aerosol particles. Citation: Ebben, C. J., S. R. Zorn, S.-B. Lee, P. Artaxo, S. T. Martin, and F. M. Geiger (2011), Stereochemical transfer to atmospheric aerosol particles accompanying the oxidation of biogenic volatile organic compounds, Geophys. Res. Lett., 38, L16807, doi: 10.1029/2011GL048599.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze by numerical simulations and mean-field approximations an asymmetric version of the stochastic sandpile model with height restriction in one dimension. Each site can have at most two particles. Single particles are inactive and do not move. Two particles occupying the same site are active and may hop to neighboring sites following an asymmetric rule. Jumps to the right or to the left occur with distinct probabilities. In the active state, there will be a net current of particles to the right or to the left. We have found that the critical behavior related to the transition from the active to the absorbing state is distinct from the symmetrical case, making the asymmetry a relevant field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the dynamics of cargo driven by a collection of interacting molecular motors in the context of ail asymmetric simple exclusion process (ASEP). The model is formulated to account for (i) excluded-volume interactions, (ii) the observed asymmetry of the stochastic movement of individual motors and (iii) interactions between motors and cargo. Items (i) and (ii) form the basis of ASEP models and have already been considered to study the behavior of motor density profile [A. Parmeggiani. T. Franosch, E. Frey, Phase Coexistence in driven one-dimensional transport, Phys. Rev. Lett. 90 (2003) 086601-1-086601-4]. Item (iii) is new. It is introduced here as an attempt to describe explicitly the dependence of cargo movement on the dynamics of motors in this context. The steady-state Solutions Of the model indicate that the system undergoes a phase transition of condensation type as the motor density varies. We study the consequences of this transition to the behavior of the average cargo velocity. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider the following problem: Forgiven graphs G and F(1),..., F(k), find a coloring of the edges of G with k colors such that G does not contain F; in color i. Rodl and Rucinski studied this problem for the random graph G,,, in the symmetric case when k is fixed and F(1) = ... = F(k) = F. They proved that such a coloring exists asymptotically almost surely (a.a.s.) provided that p <= bn(-beta) for some constants b = b(F,k) and beta = beta(F). This result is essentially best possible because for p >= Bn(-beta), where B = B(F, k) is a large constant, such an edge-coloring does not exist. Kohayakawa and Kreuter conjectured a threshold function n(-beta(F1,..., Fk)) for arbitrary F(1), ..., F(k). In this article we address the case when F(1),..., F(k) are cliques of different sizes and propose an algorithm that a.a.s. finds a valid k-edge-coloring of G(n,p) with p <= bn(-beta) for some constant b = b(F(1),..., F(k)), where beta = beta(F(1),..., F(k)) as conjectured. With a few exceptions, this algorithm also works in the general symmetric case. We also show that there exists a constant B = B(F,,..., Fk) such that for p >= Bn(-beta) the random graph G(n,p) a.a.s. does not have a valid k-edge-coloring provided the so-called KLR-conjecture holds. (C) 2008 Wiley Periodicals, Inc. Random Struct. Alg., 34, 419-453, 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased diastereoisomeric excesses are obtained for the sulfanylation reactions of some 2-methylsulfinyl cyclanones under phase-transfer catalysis using the chiral catalyst QUIBEC instead of TEBA. The optically pure (SS,2S)-2-methylsulfinyl-2-methylsulfanylcyclohexanone thus prepared reacts with ethyl acetate lithium enolate affording, after hydrolysis, (R)-2-[(ethoxycarbonyl)methyl]-2-hydroxycyclohexanone in 60% ee. Density functional theory calculations (at the B3LYP/6-311++G(d,p) level) can successfully explain the origin of this result as the kinetically favored axial attack of the nucleophile to the carbonyl group of the most stable conformer of the cyclanone, in which the CH(3)SO and CH(3)S groups are at the equatorial and axial positions, respectively. (C) 2010 Elsevier Ltd. All rights reserved.