20 resultados para ANCILLARY LIGANDS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Polynorbornadiene and polynorbornene were synthesized via ring opening metathesis polymerization (ROMP) with [RuCl(2)(PPh(3))(2)(amine)] as catalyst precursors, amine = piperidine (1) or perhydroazepine (2) in the presence of 5 mu L of ethyl diazoacetate (EDA) ([monomer]/[Ru] = 5000; 40 degrees C with 1; 25 degrees C with 2). The effects of the solvent volume (2-8 mL of CHCl(3)) reaction time (5-120 min) and atmosphere type (argon and air) on the yields were investigated to observe the behavior of the two different precursors. Quantitative yields were obtained for 60 or 120 min regardless of the starting volumes, either in argon or air, with both Ru species. However, low yields were obtained for short times (5-30 min) when the reactions are performed with large volumes (6-8 mL). In argon, the yields were larger with 2, associated to a faster propagation reaction controlled by the Ru active species. In air, the yields were larger with 1, associated to a higher resistance to O(2) of the starting and propagating Ru species. The different activities between 1 and 2 are discussed considering the steric hindrance and electronic characteristics of the amines such as ancillary ligands and their arrangements with PPh(3) and Cl(-) ions in the metal centers. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
The reactivity of the new complex [RuCl(2)(PPh(3))(2)(3,5-Me(2)piperidine)], complex 1, was investigated for ring opening metathesis polymerization (ROMP) of norbornene (NBE) and norbornadiene (NBD) in the presence of ethyl diazoacetate (EDA) in CHCl(3). The aim is to observe the combination of PPh(3) and an amine as ancillary ligands concerning the steric hindrance and the electronic perturbation in the properties of the N-bound site when replacing the amines. Thus, the results with 1 were compared to the results obtained when the amine is piperidine (complex 2). Reaction with 1 provides 70% yield of isolated polyNBE (M(n) =8.3 x 10(4) g/mol; PDI = 2.03), whereas 2 provides quantitative reaction (M(n) = 1.2 x 10(5) g/mol; PDI = 1.90) with [NBE]/[Ru] = 5000, [EDA]/[Ru] = 48 and 1.1 mu mol of Ru for 5 min at 25 degrees C. The resulting polymers showed c.a. 62% of trans-polyNBE, determined by (1)H NMR, and T(g) = 32 degrees C, determined by DSC and DMTA. For ROMP of NBD, 1 showed quantitative yield with PDI =2.62 when [NBD]/[Ru] = 5000 for 20 min at 25 degrees C, whereas the reaction with 2 reached 55% with PDI = 2.16 in the same conditions. It is concluded that the presence of the two methyl groups in the piperidine ring provides an increase in the induction period to produce the Ru-carbene species justifying better polyNBE results with 2, and a greater amine(sigma)-> Ru(pi)-> monomer synergism which contributed to the best activation of less tensioned olefin as NBD. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Polynorbonerne with high molecular weight was obtained via ring opening metathesis polymerization using catalysts derived from [RuCl(2)(PPh(2)Bz)(2) L] (1 for L = PPh(2) Bz; 2 for L = piperidine) type of complexes when in the presence of ethyl diazoacetate in CHCl(3). The polymer precipitated within a few minutes at 50 degrees C when using 1 with ca. 50% yield ([NBE]/[Ru] = 5000). Regarding 2, for either 30 min at 25 C or 5 min at 50 degrees C, more than 90% of yields are obtained; and at 50 C for 30 min a quantitative yield is obtained. The yield and PDI values are sensitive to the [NBE]/[Ru] ratio. The reaction of 1 with either isonicotinamide or nicotinamide produces six-coordinated complexes of [RuCl(2)(PPh(2)Bz)(2)(L)(2)] type, which are almost inactive and produce only small amounts of polymers at 50 C for 30 min. Thus, we Concluded that the novel complexes show very distinct reactivities for ROMP of NBE. This has been rationalized on account of a combination of synergistic effects of the phosphine-amine ancillary ligands. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this study, Cu(II) complexes with fluorinated ligands were produced aiming at the development of new, less toxic antileishmanial metallodrugs. Complexes of the general formula CuL(2) (L = lactate, trifluorolactate, 2-hydroxyisobutyrate, trifluoro-2-hydroxyisobutyrate) were synthesized in methanolic medium, purified by crystallization and characterized by elemental analysis and electronic and infrared spectroscopies. In vitro experiments with Leishmania amazonensis promastigotes showed that the trifluorolactate derivative more active than its non-fluorinated counterpart. Our results indicate that fluorinated chelators may be interesting to increase metal toxicity and/or open new paths for metallodrug chemotherapy against leishmaniasis.
Resumo:
Some nuclear receptor (NR) ligands promote dissociation of radiolabeled bound hormone from the buried ligand binding cavity (LBC) more rapidly than excess unlabeled hormone itself This result was interpreted to mean that challenger ligands bind allosteric sites on the LBD to induce hormone dissociation, and recent findings indicate that ligands bind weakly to multiple sites on the LBD surface. Here we show, that a large fraction of thyroid hormone receptor (TR) ligands promote rapid dissociation (T(1/2) < 2 h) of , radiolabeled T(3) vs. T(3) (T(1/2), approximate to 5-7 h). We cannot discern relationships between this effect and ligand size, activity or affinity for TR beta. One ligand, GC-24, binds the TR LBC and (weakly) to the TR beta-LBD surface that mediates dimer/heterodimer interaction, but we cannot link this interaction to rapid T(3) dissociation. Instead, several lines of evidence suggest that the challenger ligand must interact with the buried LBC to promote rapid T(3) release. Since previous molecular dynamics simulations suggest that TR ligands leave the LBC by several routes, we propose that a subset of challenger ligands binds and stabilizes a partially unfolded intermediate state of TR that arises during T(3) release and that this effect enhances hormone dissociation. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Five new complexes of general formula: [Ni(RSO(2)N=CS(2))(dppe)], where R = C(6)H(5) (1), 4-ClC(6)H(4) (2), 4-BrC(6)H(4) (3), 4-IC(6)H(4) (4) and dppe = 1,2-bis(diphenylphosphino) ethane and [Ni(4-IC(6)H(4)SO(2)N=CS(2))(PPh(3))(2)] (5), where PPh3 = triphenylphosphine, were obtained in crystalline form by the reaction of the appropriate potassium N-R-sulfonyldithiocarbimate K(2)(RSO(2)N=CS(2)) and dppe or PPh(3) with nickel(II) chloride in ethanol/water. The elemental analyses and the IR, (1)H NMR, (13)C NMR and (31)P NMR spectra are consistent with the formation of the square planar nickel(II) complexes with mixed ligands. All complexes were also characterized by X-ray diffraction techniques and present a distorted cis-NiS(2)P(2) square-planar configuration around the Ni atom. Quantum chemical calculations reproduced the crystallographic structures and are in accord with the spectroscopic data. Rare C-H center dot center dot center dot Ni intramolecular short contact interactions were observed in the complexes 1-5. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
5-HT(1A) receptor plays an important role in the delayed onset of antidepressant action of a class of selective serotonin reuptake inhibitors. Moreover, 5-HT(1A) receptor levels have been shown to be altered in patients suffering from major depression. In this work, hologram quantitative structure-activity relationship (HQSAR) studies were performed on a series of arylpiperazine compounds presenting affinity to the 5-HT(1A) receptor. The models were constructed with a training set of 70 compounds. The most significant HQSAR model (q(2) = 0.81, r(2) = 0.96) was generated using atoms, bonds, connections, chirality, and donor and acceptor as fragment distinction, with fragment size of 6-9. Predictions for an external test set containing 20 compounds are in good agreement with experimental results showing the robustness of the model. Additionally, useful information can be obtained from the 2D contribution maps.
Resumo:
[Ru(HL)(PPh3)(2)Cl]Cl complexes have been obtained in which HL = N(4)-ortho (complex 1), N(4)-meta (complex 2) and N(4) pctratolyl 2-acetylpyridine thiosemicarbazone (complex 3). NMR and electrochemical studies indicate that both cis and trans isomers exist in solution, and that the cis isomers are converted into the trans isomers with time. Crystal structure determination of (1) reveals that the traps isomer is formed in the solid state. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The reactions of PbPh2(OAC)(2) with alkylglyoxylate thiosemicarbazones (HRGTSC, R = Et, Bu) afforded complexes of the type [PbPh2(GTSC)] center dot H2O, [PbPh2(RGTSC)(2)] and [PbPh2Cl(BUGTSC)]. The structures of HRGTSC (R = Me, Et, Bu), [PbPh2(OAc)(RGTSC)](R = Me, Et, Bu), [PbPh2Cl(BuGTSC)] and [PbPh2(GTSC)] center dot H2O have been studied by X-ray diffraction. [PbPh2(OAc)(RGTSC)] and [PbPh2(GTSC)] center dot H2O have [PbC2NO3S] kernels and the coordination sphere of the metal is pentagonal bipyramidal. [PbPh2Cl(BuGTSC)] has a [PbC2NOSCI] kernel and the coordination geometry around lead is pentagonal bipyramidal with one vacant site. Analysis of the bond distances in [PbPh2(GTSC)] center dot H2O suggests a significant affinity between diphenyllead(IV) and carboxylate donor groups, supporting a borderline acidic character for this organometallic cation. H-1 and C-13 NMR spectra in DMSO-d(6) suggest the partial dissociation of the acetate in [PbPh2(OAc)(RGTSC)] solutions and indicate some differences in the coordination mode of the two RGTSC(-) ligands in [PbPh2(RGTSC)(2)] complexes. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
New Pd(II) and Pt(II) complexes [ML2] (HL = a substituted 2,5-dihydro-5-oxo-1H-pyrazolone-1-carbothioamide) have been synthesized by reacting K2MCl4 (M = Pd, Pt) or Pd(OAc)(2) with beta-ketoester thiosemicarbazones. The structures of seven of these complexes were determined by X-ray diffraction. Although all exhibit a distorted square-planar coordination with trans- or (in one case) cis-[MN2S2] kernels, their supramolecular arrangements vary widely from isolated molecules to 3D-networks. The in vitro antitumoral assays performed with two HL ligands and their metal complexes showed significant cytostatic activity for the latter, with the most active [ML2] derivative (a palladium complex) being about sixteen times more active than cis-DDP against the cis-platinum-resistant cell line A2780cisR. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Three new homodinuclear complexes containing substituted phenolate-type ligands based on the N(5)O(2) donor (2-(N,N-Bis(2-pyridylmethyl)aminomethyl)-6-(N`,N`-(2-hydroxybenzyl)(2-pyridylmethyl))aminomethyl)-4-methylphenol (H(2)L-H) were synthesized and characterized by X-ray crystallography. Potentiometric titration studies in 70% (v/v) aqueous ethanol show that all three complexes exhibit a common {Cu(II)(mu-phenoxo)(mu-OH)Cu(II)(OH)} core in solution. Kinetic studies on the oxidation reaction of 3,5-di-tert-butylcatechol revealed that the catalytic activity of the metal complexes increases toward the ligand containing an electron-donating group. In addition, these complexes also carried out DNA cleavage by hydrolytic and oxidative pathways. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
5-HT(1A) receptor antagonists have been employed to treat depression, but the lack of structural information on this receptor hampers the design of specific and selective ligands. In this study, we have performed CoMFA studies on a training set of arylpiperazines (high affinity 5-HT(1A) receptor ligands) and to produce an effective alignment of the data set, a pharmacophore model was produced using Galahad. A statistically significant model was obtained, indicating a good internal consistency and predictive ability for untested compounds. The information gathered from our receptor-independent pharmacophore hypothesis is in good agreement with results from independent studies using different approaches. Therefore, this work provides important insights on the chemical and structural basis involved in the molecular recognition of these compounds. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
A cDNA coding for a Tenebrio molitor midgut protein named peritrophic membrane ancillary protein (PMAP) was cloned and sequenced. The complete cDNA codes for a protein of 595 amino acids with six insect-allergen-related-repeats that may be grouped in A (predicted globular)- and B (predicted nonglobular)-types forming an ABABAB structure. The PMAP-cDNA was expressed in Pichia pastoris and the recombinant protein (64 kDa) was purified to homogeneity and used to raise antibodies in rabbits. The specific antibody detected PMAP peptides (22 kDa) in the anterior and middle midgut tissue, luminal contents, peritrophic membrane and feces. These peptides derive from PMAP, as supported by mass spectrometry, and resemble those formed by the in vitro action of trypsin on recombinant PMAP. Both in vitro and in vivo PMAP processing seem to occur by attack of trypsin to susceptible bonds in the coils predicted to link AB pairs, thus releasing the putative functional AB structures. The AB-domain structure of PMAP is found in homologous proteins from several insect orders, except lepidopterans that have the apparently derived protein known as nitrile-specifier protein. Immunocytolocalization shows that PMAP is secreted by exocytosis and becomes entrapped in the glycocalyx, before being released into midgut contents. Circumstantial evidence suggests that PMAP-like proteins have a role in peritrophic membrane type 2 formation. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this work, the use of proton nuclear magnetic resonance, (1)H NMR, was fully described as a powerful tool to follow a photoreaction and to determine accurate quantum yields, so called true quantum yields (Phi(true)), when a reactant and photoproduct absorption overlap. For this, Phi(true) for the trans-cis photoisomerization process were determined for rhenium(I) polypyridyl complexes, fac-[Re(CO)(3)(NN)(trans-L)](+) (NN = 1,10-phenanthroline, phen, or 4,7-diphenyl-1,10-phenanthroline, ph(2)phen, and L = 1,2-bis(4-pyridyl) ethylene, bpe, or 4-styrylpyridine, stpy). The true values determined at 365 nm irradiation (e. g. Phi(NMR) = 0.80 for fac-[Re(CO)(3)(phen)(trans-bpe)](+)) were much higher than those determined by absorption spectral changes (Phi(UV-Vis) = 0.39 for fac-[Re(CO)(3)(phen)(trans-bpe)](+)). Phi(NMR) are more accurate in these cases due to the distinct proton signals of trans and cis-isomers, which allow the actual determination of each component concentration under given irradiation time. Nevertheless when the photoproduct or reactant contribution at the probe wavelength is negligible, one can determine Phi(true) by regular absorption spectral changes. For instance, Phi(313) nm for free ligand photoisomerization determined both by absorption and (1)H NMR variation are equal within the experimental error (bpe: Phi(UV-Vis) = 0.27, Phi(NMR) = 0.26; stpy: Phi(UV-Vis) = 0.49, Phi(NMR) = 0.49). Moreover, (1)H NMR data combined with electronic spectra allowed molar absorptivity determination of difficult to isolate cis-complexes. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
A new class of chiral beta-amino disulfides was synthesized from readily available and inexpensive starting materials by a straightforward method and their abilities as ligands were examined in the enantioselective addition of diethylzinc to aldehydes. Enantiomeric excesses of up to 99% have been obtained using 0.5 mol % of the chiral catalysts.