14 resultados para ACID-RAIN STRESS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antioxidants probably play an important role in the etiology of type 2 diabetes (DM2). This study evaluated the effects of supplementation with lipoic acid (LA) and alpha-tocopherol on the lipid profile and insulin sensitivity of DM2 patients. A randomized, double-blind, placebo-controlled trial involving 102 DM2 patients divided into four groups to receive daily supplementation for 4 months with: 600 mg LA (n = 26); 800 mg alpha-tocopherol (n = 25); 800 mg alpha-tocopherol + 600 mg LA (n = 25); placebo (n = 26). Plasma alpha-tocopherol, lipid profile, glucose, insulin, and the HOMA index were determined before and after supplementation. Differences within and between groups were compared by ANOVA using Bonferroni correction. Student`s t-test was used to compare means of two independent variables. The vitamin E/total cholesterol ratio improved significantly in patients supplemented with vitamin E + LA and vitamin E alone (p <= 0.001). There were improvements of the lipid fractions in the groups receiving LA and vitamin E alone or in combination, and on the HOMA index in the LA group, but not significant. The results suggest that LA and vitamin E supplementation alone or in combination did not affect the lipid profile or insulin sensitivity of DM2 patients. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the cardiac functioning in male Wistar rats after treatments with methionine and homocysteine thiolactone (HcyT). The rats were distributed into 3 groups and treated for 8 weeks. Group I was the control (CO) group, given water, group II was treated with methionine, and group III with HcyT (100 mg/kg). Morphometric and functional cardiac parameters were evaluated by echocardiography. Superoxide dismutase (SOD), catalase, and glutathione S-transferase activities, chemiluminescence, thiobarbituric acid reactive substances, and immunocontent were measured in the myocardium. Hyperhomocysteinemia was observed in rats submitted to the both treatments. The results showed diastolic function was compromised in HcyT group, seen by the increase of E/A (peak velocity of early (E) and late (A) diastolic filling) ratio, decrease in deceleration time of E wave and left ventricular isovolumic relaxation time. Myocardial performance index was increased in HcyT group and was found associated with increased SOD immunocontent. HcyT group demonstrated an increase in SOD, catalase, and glutatione S-transferase activity, and chemiluminescence and thiobarbituric acid reactive substances. Overall, these results indicated that HcyT induces a cardiac dysfunction and could be associated with oxidative stress increase in the myocardium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endospermic legumes are abundant in tropical forests and their establishment is closely related to the mobilization of cell-wall storage polysaccharides. Endosperm cells also store large numbers of protein bodies that play an important role as a nitrogen reserve in this seed. In this work, a systems approach was adopted to evaluate some of the changes in carbohydrates and hormones during the development of seedlings of the rain forest tree Sesbania virgata during the period of establishment. Seeds imbibed abscisic acid (ABA), glucose and sucrose in an atmosphere of ethylene, and the effects of these compounds on the protein contents, alpha-galactosidase activity and endogenous production of ABA and ethylene by the seeds were observed. The presence of exogenous ABA retarded the degradation of storage protein in the endosperm and decreased alpha-galactosidase activity in the same tissue during galactomannan degradation, suggesting that ABA represses enzyme action. On the other hand, exogenous ethylene increased alpha-galactosidase activity in both the endosperm and testa during galactomannan degradation, suggesting an inducing effect of this hormone on the hydrolytic enzymes. Furthermore, the detection of endogenous ABA and ethylene production during the period of storage mobilization and the changes observed in the production of these endogenous hormones in the presence of glucose and sucrose, suggested a correlation between the signalling pathway of these hormones and the sugars. These findings suggest that ABA, ethylene and sugars play a role in the control of the hydrolytic enzyme activities in seeds of S. virgata, controlling the process of storage degradation. This is thought to ensure a balanced flow of the carbon and nitrogen for seedling development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endogenous contents of indolyl-3-acetic acid (IAA) and abscisic acid (ABA) were quantified in excised roots of Catasetum fimbriatum (Orchidaceae) cultured in vitro on solidified Vacin and Went medium with 1, 2, 4, 6, 8 and 10 % sucrose, as well as 2 % sucrose plus mannitol. Maximum root growth was observed in media with 4 % sucrose and 2 % sucrose plus 2.2 % mannitol, suggesting that a moderate water or osmotic stress promotes orchid root growth. Contents of both ABA and IAA increased in parallel to increasing sucrose concentration and a correlation between root elongation and the ABA/IAA ratio was observed. Incubating isolated C. fimbriatum roots with radiolabeled tryptophan, we showed an accumulation of IAA and its conjugates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During seedling establishment, cotyledons of the rain forest tree Hymenaea courbaril mobilize storage cell wall xyloglucan to sustain growth. The polysaccharide is degraded and its products are transported to growing sink tissues. Auxin from the shoot controls the level of xyloglucan hydrolytic enzymes. It is not yet known how important the expression of these genes is for the control of storage xyloglucan degradation. In this work, partial cDNAs of the genes xyloglucan transglycosylase hydrolase (HcXTH1) and beta-galactosidase (HcBGAL1), both related to xyloglucan degradation, and two other genes related to sucrose metabolism [alkaline invertase (HcAlkIN1) and sucrose synthase (HcSUS1)], were isolated. The partial sequences were characterized by comparison with sequences available in the literature, and phylogenetic trees were assembled. Gene expression was evaluated at intervals of 6 h during 24 h in cotyledons, hypocotyl, roots, and leaves, using 45-d-old plantlets. HcXTH1 and HcBGAL1 were correlated to xyloglucan degradation and responded to auxin and light, being down-regulated when transport of auxin was prevented by N-1-naphthylphthalamic acid (NPA) and stimulated by constant light. Genes related to sucrose metabolism, HcAlkIN1 and HcSUS1, responded to inhibition of auxin transport in consonance with storage mobilization in the cotyledons. A model is proposed suggesting that auxin and light are involved in the control of the expression of genes related to storage xyloglucan mobilization in seedlings of H. courbaril. It is concluded that gene expression plays a role in the control of the intercommunication system of the source-sink relationship during seeding growth, favouring its establishment in the shaded environment of the rain forest understorey.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic exposure of pancreatic beta-cells to saturated non-esterified fatty acids can lead to inhibition of insulin secretion and apoptosis. Several previous studies have demonstrated that saturated fatty acids such as PA (palmitic acid) are detrimental to beta-cell function compared with unsaturated fatty acids. In the present study, we describe the effect of the polyunsaturated AA (arachidonic acid) on the function of the clonal pancreatic beta-cell line BRIN-BD11 and demonstrate AA-dependent attenuation of PA effects. When added to beta-cell incubations at 100 mu M, AA can stimulate cell proliferation and chronic (24 h) basal insulin secretion. Microarray analysis and/or real-time PCR indicated significant AA-dependent up-regulation of genes involved in proliferation and fatty acid metabolism [e.g. Angptl (angiopoietin-like protein 4), Ech1 (peroxisomal Delta(3.5),Delta(2.4)-dienoyl-CoA isomerase), Cox-1 (cyclo-oxygenase-1) and Cox-2, P < 0.05]. Experiments using specific COX and LOX (lipoxygenase) inhibitors demonstrated the importance of COX-1 activity for acute (20 min) stimulation of insulin secretion, suggesting that AA metabolites may be responsible for the insulinotropic effects. Moreover, concomitant incubation of AA with PA dose-dependently attenuated the detrimental effects of the saturated fatty acid, so reducing apoptosis and decreasing parameters of oxidative stress [ROS (reactive oxygen species) and NO levels] while improving the GSH/GSSG ratio. AA decreased the protein expression of iNOS (inducible NO synthase), the p65 subunit of NF-kappa B (nuclear factor kappa B) and the p47 subunit of NADPH oxidase in PA-treated cells. These findings indicate that AA has an important regulatory and protective beta-cell action, which may be beneficial to function and survival in the `lipotoxic` environment commonly associated with Type 2 diabetes mellitus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Positive acute effects of fatty acids (FA) on glucose-stimulated insulin secretion (GSIS) and reactive oxygen species (ROS) formation have been reported. However, those studies mainly focused on palmitic acid actions, and reports on oleic acid (OA) are scarce. In this study, the effect of physiological OA levels on beta-cell function and the mechanisms involved were investigated. Analyses of insulin secretion, FA and glucose oxidation, and ROS formation showed that, at high glucose concentration, OA treatment increases GSIS in parallel with increased ROS content. At high glucose, OA oxidation was increased, accompanied by a suppression of glucose oxidation. Using approaches for protein knockdown of FA receptor G protein-coupled receptor 40 (GPR40) and of p47(PHOX), a reduced nicotinamide adenine dinucleotide phosphate [NAD(P) H] oxidase component, we observed that GPR40 does not mediate OA effects on ROS formation and GSIS. However, in p47(PHOX) knockdown islets, OA-induced ROS formation and the inhibitory effect of OA on glucose metabolism was abolished. Similar results were obtained by pharmacological inhibition of protein kinase C, a known activator of NAD(P) H oxidase. Thus, ROS derived from OA metabolism via NAD(P) H oxidase are an inhibitor of glucose oxidation. Put together, these results indicate that OA acts as a modulator of glucose oxidation via ROS derived from its own metabolism in beta-cells. (Endocrinology 152: 3614-3621, 2011)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hyperhomocysteinemia has been related to various diseases, including homocystinuria, neurodegenerative and hepatic diseases. In the present study we initially investigated the effect of chronic homocysteine administration on some parameters of oxidative stress, named total radical-trapping antioxidant potential, total antioxidant reactivity, catalase activity, chemiluminescence, thiobarbituric acid-reactive substances, and total thiol content in liver of rats. We also performed histological analysis, evaluating steatosis, inflammatory infiltration, fibrosis, and glycogen/glycoprotein content in liver tissue sections from hyperhomocysteinemic rats. Finally, we evaluated the activities of aminotransferases in liver and plasma of hyperhomocysteinemic rats. Wistar rats received daily subcutaneous injection of Hcy from their 6th to their 28th day of life. Twelve hours after the last injection the rats were sacrificed, liver and plasma were collected. Hyperhomocysteinemia decreased antioxidant defenses and total thiol content, and increased lipid peroxidation in liver of rats, characterizing a reliable oxidative stress. Histological analysis indicated the presence of inflammatory infiltrate, fibrosis and reduced content of glycogen/glycoprotein in liver tissue sections from hyperhomocysteinemic rats. Aminotransferases activities were not altered by homocysteine. Our data showed a consistent profile of liver injury elicited by homocysteine, which could contribute to explain, at least in part, the mechanisms involved in human liver diseases associated to hyperhomocysteinemia. (C) 2009 ISDN. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The polymorphisms of endothelial nitric oxide synthase (eNOS) are associated with reduced eNOS activity. Aerobic exercise training (AEX) may influence resting nitric oxide (NO) production, oxidative stress and blood pressure. The purpose of this study was to investigate the effect of AEX on the relationship among blood pressure, eNOS gene polymorphism and oxidative stress in pre-hypertensive older people. 118 pre-hypertensive subjects (59 +/- A 6 years) had blood samples collected after a 12 h overnight fast for assessing plasma NO metabolites (NOx) assays, thiobarbituric acid reactive substances (T-BARS) and superoxide dismutase activity (ecSOD). eNOS polymorphism (T-786C and G-894T) was done by standard PCR methods. All people were divided according to the genotype results (G1: TT/GG, G2: TT/GT + TT, G3: TC + CC/GG, G4: TC + CC/GT + TT). All parameters were measured before and after 6 months of AEX (70% of VO(2 max)). At baseline, no difference was found in systolic and diastolic blood pressure, ecSOD and T-BARS activity. Plasma NOx levels were significantly different between G1 (19 +/- A 1 mu M) and G4 (14.2 +/- A 0.6 mu M) and between G2 (20.1 +/- A 1.7 mu M) and G4 (14.2 +/- A 0.6 mu M). Therefore, reduced NOx concentration in G4 group occurred only when the polymorphisms were associated, suggesting that these results are more related to genetic factors than NO-scavenging effect. After AEX, the G4 increased NOx values (17.2 +/- A 1.2 mu M) and decreased blood pressure. G1, G3 and G4 decreased T-BARS levels. These results suggest the AEX can modulate the NOx concentration, eNOS activity and the relationship among eNOS gene polymorphism, oxidative stress and blood pressure especially in C (T-786C) and T (G-894T) allele carriers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selenoproteins are characterized by the incorporation of at least one amino acid selenocysteine (Sec-U) encoded by in-frame UGA stop codons. These proteins, as well as the components of the Sec synthesis pathway, are present in members of the bacteria, archaea and eukaryote domains. Although not a ubiquitous pathway in all organisms, it was also identified in several protozoa, including the Kinetoplastida. Genetic evidence has indicated that the pathway is non-essential to the survival of Trypanosoma growing in non-stressed conditions. By analyzing the effects of RNA interference of the Trypanosoma brucei selenophosphate synthetase SPS2, we found a requirement under sub-optimal growth conditions. The present work shows that SPS2 is involved in oxidative stress protection of the parasite and its absence severely hampers the parasite survival in the presence of an oxidizing environment that results in an apoptotic-like phenotype and cell death. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a high-resolution reverse-phase liquid chromatography method we found that the tissues of the hermatypic coral Pocillopora capitato (collected in Santiago Bay, Mexico) contain a high diversity of primary and secondary mycosporine-like amino acids (MAAs) typical of some reef-building coral species: mycosporine-glycine, shinorine, porphyra-334, mycosporine-methylamine-serine, mycosporine-methylamine-threonine, palythine-serine, palythine and one additional novel predominant MAA, with an absorbance maximum of 320 nm. Here we document the isolation and characterization of this novel MAA from the coral A capitata. Using low multi-stage mass analyses of deuterated and non deuterated compounds, high-resolution mass analyses (Time of Flight, TOF) and other techniques, this novel compound was characterized as palythine-threonine. Palythine-threonine was also present in high concentrations in the corals Pocillopora eydouxi and Stylophora pistillata indicating a wider distribution of this MAA among reef-building corals. From structural considerations we suggest that palythine-threonine is formed by decarboxylation of porphyra-334 followed by demethylation of mycosporine-methylamine-threonine. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipid peroxidation produces a large number of reactive aldehydes as secondary products. We have previously shown that the reaction of cytochrome c with trans,trans-2, 4-decadienal (DDE), an aldehyde generated as a product of lipid peroxidation in cell membranes, results in the formation of adducts. Mass spectrometry analysis indicated that His-33, Lys-39, Lys-72 and Lys-100 in cytochrome c were modified by DDE. In the present work, we investigated the effect of DDE on isolated rat liver mitochondria. DDE (162 mu M) treatment increases the rate of mitochondrial oxygen consumption. Extensive mitochondrial swelling upon treatment with DDE (900 nM-162 mu M) was observed by light scattering and transmission electron microscopy experiments. DDE-induced loss of inner mitochondrial membrane potentials, monitored by safranin O fluorescence, was also observed. Furthermore, DDE-treated mitochondria showed an increase in lipid peroxidation, as monitored by MDA formation. These results suggest that reactive aldehydes promote mitochondrial dysfunction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucose modulates plant metabolism, growth, and development. In Arabidopsis (Arabidopsis thaliana), Hexokinase1 (HXK1) is a glucose sensor that may trigger abscisic acid (ABA) synthesis and sensitivity to mediate glucose-induced inhibition of seedling development. Here, we show that the intensity of short-term responses to glucose can vary with ABA activity. We report that the transient (2 h/4 h) repression by 2% glucose of AtbZIP63, a gene encoding a basic-leucine zipper (bZIP) transcription factor partially involved in the Snf1-related kinase KIN10-induced responses to energy limitation, is independent of HXK1 and is not mediated by changes in ABA levels. However, high-concentration (6%) glucose-mediated repression appears to be modulated by ABA, since full repression of AtbZIP63 requires a functional ABA biosynthetic pathway. Furthermore, the combination of glucose and ABA was able to trigger a synergistic repression of AtbZIP63 and its homologue AtbZIP3, revealing a shared regulatory feature consisting of the modulation of glucose sensitivity by ABA. The synergistic regulation of AtbZIP63 was not reproduced by an AtbZIP63 promoter-5`-untranslated region:beta-glucuronidase fusion, thus suggesting possible posttranscriptional control. A transcriptional inhibition assay with cordycepin provided further evidence for the regulation of mRNA decay in response to glucose plus ABA. Overall, these results indicate that AtbZIP63 is an important node of the glucose-ABA interaction network. The mechanisms by which AtbZIP63 may participate in the fine-tuning of ABA-mediated abiotic stress responses according to sugar availability (i.e., energy status) are discussed.