7 resultados para 982.081
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
An inappropriate prosthetic fit could cause stress over the interface implant/bone. The objective of this study was to compare stresses transmitted to implants from frameworks cast using different materials and to investigate a possible correlation between vertical misfits and these stresses. Fifteen one-piece cast frameworks simulating bars for fixed prosthesis in a model with five implants were fabricated and arranged into three different groups according to the material used for casting: CP Ti (commercially pure titanium), Co-Cr (cobalt-chromium) or Ni-Cr-Ti (nickel-chromium-titanium) alloys. Each framework was installed over the metal model with all screws tightened to a 10 N cm torque and then, vertical misfits were measured using an optical microscope. The stresses transmitted to implants were measured using quantitative photoelastic analysis in values of maximum shear stress (T), when each framework was tightened to the photoelastic model to a 10 N cm standardized torque. Stress data were statistically analyzed using one-way ANOVA and Tukey`s test and correlation tests were performed using Pearson`s rank correlation (alpha = 0.05). Mean and standard deviation values of vertical misfit are presented for CP Ti (22.40 +/- 9.05 mu m), Co-Cr (66.41 +/- 35.47 mu m) and Ni-Cr-Ti (32.20 +/- 24.47 mu m). Stresses generated by Co-Cr alloy (tau = 7.70 +/- 2.16 kPa) were significantly higher than those generated by CP Ti (tau = 5.86 +/- 1.55 kPa, p = 0.018) and Ni-Cr-Ti alloy (tau =5.74 +/- 3.05 kPa, p = 0.011), which were similar (p = 0.982). Correlations between vertical misfits and stresses around the implants were not significant as for any evaluated materials. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, the laminar fluid flow of Newtonian and non-Newtonian of aqueous solutions in a tubular membrane is numerically studied. The mathematical formulation, with associated initial and boundary conditions for cylindrical coordinates, comprises the mass conservation, momentum conservation and mass transfer equations. These equations are discretized by using the finite-difference technique on a staggered grid system. Comparisons of the three upwinding schemes for discretization of the non-linear (convective) terms are presented. The effects of several physical parameters on the concentration profile are investigated. The numerical results compare favorably with experimental data and the analytical solutions. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Ischemia-reperfusion injury is the major cause of organ dysfunction or even nonfunction following transplantation. It can attenuate the long-term survival of transplanted organs. To evaluate the severity of renal ischemia injury determined by histology, we applied laser(442 nm and 532 nm) induced fluorescence (LIF), mitochondria respiration, and membrane swelling to evaluate 28 Wistar rats that underwent left kidney warm ischemia for 20, 40, 60, or 80 minutes. LIF performed before ischemia (control) was repeated at 20, 40, 60, and 80 minutes thereafter. We harvested left kidney tissue samples immediately after LIF determination for histology and mitochondrial analyses: state 3 and 4 respiration, respiration control rate (RCR), and membrane swelling. The association of optic spectroscopy with histological damage showed: LIF, 442 nm (r(2) = 0.39, P < .001) and 532 nm, (r(2) = 0.18, P = .003); reflecting laser/fluorescence-induced, 442 nm (r(2) = 0.20, P = .002) and 532 nm (r(2) = 0.004, P = .67). The associations between mitochondria function and tissue damage were: state 3 respiration (r(2) = 0.43, P = .0004), state 4 respiration (r(2) = 0.03, P = 0.38), RCR (r(2) = 0.28, P = .007), and membrane swelling (r(2) = 0.02, P = .43). The intensity of fluorescence emitted by tissue excited by laser, especially at a wave length of 442 nm, was determined in real time. Mitochondrial state 3 respiration and respiratory control ratio also exhibited good correlations with the grade of ischemic tissue damage.
Resumo:
The Laplace distribution is one of the earliest distributions in probability theory. For the first time, based on this distribution, we propose the so-called beta Laplace distribution, which extends the Laplace distribution. Various structural properties of the new distribution are derived, including expansions for its moments, moment generating function, moments of the order statistics, and so forth. We discuss maximum likelihood estimation of the model parameters and derive the observed information matrix. The usefulness of the new model is illustrated by means of a real data set. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A mild new procedure for preparing protected peptide thioesters, based oil Ca(2+)-assisted thiolysis of peptide-Kaiser oxime resin (KOR) linkage, is described. Ac-Ile-Ser(Bzl)-Asp(OcHx)-SR (Ac: acetyl; Bzl: benzyl; cHx: cyclohexyl), model peptide, was readily released from the resin by incubating the peptide-KOR at 60 degrees C in mixtures of DMF with n-butanethiol [R = (CH(2))(3)CH(3)] or ethyl 3-mercaptopropionate [R = (CH(2))(2)COOCHCH(3)] containing Ca(CH(3)COO)(2). After serine and aspartic acid side-chain deprotection under acid conditions, Ac-Ile-Ser-Asp-S(CH(2))(2)COOCH(2)CH(3) was successfully obtained with good quality and high yield. This type of C-terminal modified peptide may act as an excellent acyl donor in peptide segment condensation by the thioester method, native chemical ligation and enzymatic methods. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A very high level of theoretical treatment (complete active space self-consistent field CASSCF/MRCI/aug-cc-pV5Z) was used to characterize the spectroscopic properties of a manifold of quartet and doublet states of the species BeP, as yet experimentally unknown. Potential energy curves for 11 electronic states were obtained, as well as the associated vibrational energy levels, and a whole set of spectroscopic constants. Dipole moment functions and vibrationally averaged dipole moments were also evaluated. Similarities and differences between BeN and BeP were analysed along with the isovalent SiB species. The molecule BeP has a X (4)Sigma(-) ground state, with an equilibrium bond distance of 2.073 angstrom, and a harmonic frequency of 516.2 cm(-1); it is followed closely by the states (2)Pi (R(e) = 2.081 angstrom, omega(e) = 639.6 cm(-1)) and (2)Sigma(-) (R(e) = 2.074 angstrom, omega(e) = 536.5 cm(-1)), at 502 and 1976 cm(-1), respectively. The other quartets investigated, A (4)Pi (R(e) = 1.991 angstrom, omega(e) = 555.3 cm(-1)) and B (4)Sigma(-) (R(e) = 2.758 angstrom, omega(e) = 292.2 cm(-1)) lie at 13 291 and 24 394 cm(-1), respectively. The remaining doublets ((2)Delta, (2)Sigma(+)(2) and (2)Pi(3)) all fall below 28 000 cm(-1). Avoided crossings between the (2)Sigma(+) states and between the (2)Pi states add an extra complexity to this manifold of states.
Resumo:
CCSD(T)/cc-pVnZ (n = D, T, Q) calculations followed by extrapolations to the CBS limit are used to characterize stationary states of species participating in the N((4)S) + CH(3) (2A ``) reaction on the triplet PES. A mechanistic model is investigated and reaction rates are computed for every step and the overall reaction. Our best CBS estimate (1.93 x 10(10) cm(3) molecule(1) s(1)) for the overall rate constant leading to the formation of H(2)CN + H compares well with the experimental values (8.5 x 10 (11) and 1.3 x 10(10) cm(3) molecule(1) s(1)), thus reducing significantly the discrepancy of a previous theoretical result (9.1 x 10(12) cm(3) molecule(1) s(1)). (C) 2008 Elsevier B.V. All rights reserved.