The beta Laplace distribution


Autoria(s): CORDEIRO, Gauss M.; LEMONTE, ArturJ.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2011

Resumo

The Laplace distribution is one of the earliest distributions in probability theory. For the first time, based on this distribution, we propose the so-called beta Laplace distribution, which extends the Laplace distribution. Various structural properties of the new distribution are derived, including expansions for its moments, moment generating function, moments of the order statistics, and so forth. We discuss maximum likelihood estimation of the model parameters and derive the observed information matrix. The usefulness of the new model is illustrated by means of a real data set. (C) 2011 Elsevier B.V. All rights reserved.

CNPq

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

FAPESP (Brazil)

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Identificador

STATISTICS & PROBABILITY LETTERS, v.81, n.8, p.973-982, 2011

0167-7152

http://producao.usp.br/handle/BDPI/30783

10.1016/j.spl.2011.01.017

http://dx.doi.org/10.1016/j.spl.2011.01.017

Idioma(s)

eng

Publicador

ELSEVIER SCIENCE BV

Relação

Statistics & Probability Letters

Direitos

restrictedAccess

Copyright ELSEVIER SCIENCE BV

Palavras-Chave #Double exponential distribution #Laplace distribution #Maximum likelihood estimation #Mean deviation #Order statistic #GOODNESS-OF-FIT #TESTS #NOISE #Statistics & Probability
Tipo

article

original article

publishedVersion