11 resultados para 901
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Emission of fine particles by mobile sources has been a matter of great concern due to its potential risk both to human health and the environment. Although there is no evidence that one sole component may be responsible for the adverse health outcomes, it is postulated that the metal particle content is one of the most important factors, mainly in relation to oxidative stress. Data concerning the amount and type of metal particles emitted by automotive vehicles using Brazilian fuels are limited. The aim of this study was to identify inhalable particles (PM10) and their trace metal content in two light-duty vehicles where one was fueled with ethanol while the other was fueled with gasoline mixed with 22% of anhydrous ethanol (gasohol); these engines were tested on a chassis dynamometer. The elementary composition of the samples was evaluated by the particle-induced x-ray emission technique. The experiment showed that total emission factors ranged from 2.5 to 11.8 mg/km in the gasohol vehicle, and from 1.2 to 3 mg/km in the ethanol vehicle. The majority of particles emitted were in the fine fraction (PM2.5), in which Al, Si, Ca, and Fe corresponded to 80% of the total weight. PM10 emissions from the ethanol vehicle were about threefold lower than those of gasohol. The elevated amount of fine particulate matter is an aggravating factor, considering that these particles, and consequently associated metals, readily penetrate deeply into the respiratory tract, producing damage to lungs and other tissues.
Resumo:
Glutaredoxins (Grxs) are small (9-12 kDa) heat-stable proteins that are ubiquitously distributed. In Saccharomyces cerevisiae, seven Grx enzymes have been identified. Two of them (yGrx1 and yGrx2) are dithiolic, possessing a conserved Cys-Pro-Tyr-Cys motif. Here, we show that yGrx2 has a specific activity 15 times higher than that of yGrx1, although these two oxidoreductases share 64% identity and 85% similarity with respect to their amino acid sequences. Further characterization of the enzymatic activities through two-substrate kinetics analysis revealed that yGrx2 possesses a lower Km for glutathione and a higher turnover than yGrx1. To better comprehend these biochemical differences, the pK(a) of the N-terminal active-site cysteines (Cys27) of these two proteins and of the yGrx2-C30S mutant were determined. Since the pK(a) values of the yGrx1 and yGix2 Cys27 residues are very similar, these parameters cannot account for the difference observed between their specific activities. Therefore, crystal structures of yGrx2 in the oxidized form and with a glutathionyl mixed disulfide were determined at resolutions of 2.05 and 1.91 angstrom, respectively. Comparisons of yGrx2 structures with the recently determined structures of yGrx1 provided insights into their remarkable functional divergence. We hypothesize that the substitutions of Ser23 and Gln52 in yGrx1 by Ala23 and Glu52 in yGrx2 modify the capability of the active-site C-terminal cysteine to attack the mixed disulfide between the N-terminal active-site cysteine and the glutathione molecule. Mutagenesis studies supported this hypothesis. The observed structural and functional differences between yGrx1 and yGrx2 may reflect variations in substrate specificity. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Objective: To evaluate the transepithelial transport of sodium, glucose, potassium, and water and the mRNA level of the sodium-glucose cotransporter (SGLT1) and the facilitated sugar transporter (GLUT2) in the small intestine of iron-deficient rats. Methods: After 6 wk of receiving diets with low or normal iron content, rats (Wistar-EPM) were subjected to two experiments: 1) evaluation of the transepithelial transport of sodium, glucose, potassium, and water by an ""in vivo"" experimental model of intestinal perfusion and 2) determination of relative SGLT1 and GLUT2 mRNA levels in the proximal, intermediate, and distal portions of the small intestine by the northern blotting technique. Results: Hemoglobin and hepatic iron levels were statistically lower in the anemic rats. The mean transepithelial transports of sodium (-33.0 mu Eq . min(-1) . cm(-1)), glucose (426.0 mu M . min(-1) . cm(-1)), and water (0.4 mu L . min(-1) . cm(-1)) in the small intestine of the anemic rats were significantly lower than in the control group (349.1 mu Eq . min(-1) cm(-1), 842.6 mu M . min(-1) . cm(-1), and 4.3 mu l . min(-1) cm(-1), respectively, P < 0.05). The transepithelial transport of potassium was similar for both groups. The relative SGLT1 mRNA levels of the anemic rats in the intermediate (1.796 +/- 0.659 AU) and distal (1.901 +/- 0.766 AU) segments were significantly higher than the values for the control rats (intermediate 1.262 +/- 0.450 AU, distal 1.244 +/- 0.407 AU). No significant difference was observed for the relative SLGT1 mRNA levels in the proximal segment or for the GLUT2 mRNA levels in all segments. Conclusion: Iron deficiency decreases the absorption of glucose, sodium, and water and increases SGLT1 mRNA in the intermediate and distal segments of the small intestine of rats. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Relaxing action of sodium nitroprusside (SNP) was significantly reduced in the stomach fundus of mice lacking the kinin B(1) receptor (B(1)(-/-)). Increased basal cGMP accumulation was correlated with attenuated SNP induced dose-dependent relaxation in B(1)(-/-) when compared with wild type (WT) control mice. These responses to SNP were completely blocked by the guanylate cyclase inhibitor ODQ(10 mu M). It was also found that Ca(2+)-dependent, constitutive nitric oxide synthase (cNOS) activity was unchanged but the Ca(2+)-independent inducible NOS (iNOS) activity was greater in B(1)(-/-) mice than in WT animals. Zaprinast (100 mu M), a specific phosphodiesterase inhibitor, increased the nitrergic relaxations and the accumulation of the basal as well as the SNP-stimulated cGMP in WT but not in B(1)(-/-) stomach fundus. From these findings it is concluded that the inhibited phosphodiesterase activity and high level of cGMP reduced the resting muscle tone, impairing the relaxant responses of the stomach in B(1)(-/-) mice. In addition, it can be suggested that functional B(2) receptor might be involved in the NO compensatory mechanism associated with the deficiency of kinin B(1) receptor in the gastric tissue of the transgenic mice. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Synthesis, infrared spectroscopy and crystal structure of a new potassium decavanadate decahydrate, K(6)[V(10)O(28)] 10H(2)O, has been reported The infrared spectrum is dominated by decavanadate polyanion and water bands The X-ray crystallography analysis found the compound crystallizes in a triclinic system with the parameters a = 10 5334 (4) angstrom, b = 10 6600 (4) angstrom, c = 17 7351 (5) angstrom, alpha = 76 940 (2)degrees, beta = 75 836 (2)degrees, gamma = 64 776 (2)degrees, V = 1,729 86 (11) A(3), Z = 2, space group P (1) over bar The polyanion consists of ten [VO(6)] octahedra sharing edges, in which the V-O distances are in good agreement with those reported for other decavanadates The crystal structure is stabilized by potassium cations and water molecules forming a complex pattern of hydrogen bonding and short contact ionic interactions
Resumo:
The Barra do Itapirapua ( BIT) carbonatites in southern Brazil belong to the final stages of the Early Cretaceous alkaline rock - carbonatite magmatism of the Ponta Grossa Arch Province. The BIT complex is a dyke and vein stockwork in which four main carbonatitic phases are recognized, mainly magnesiocarbonatites and ferrocarbonatites. These carbonatites are generally overprinted by pervasive hydrothermal events. The C-O stable isotopic data indicate re-equilibration under hydrothermal conditions at temperatures between 375 and 80 degrees C. Significant amounts of REE fluorocarbonate minerals, relatively Sr- and Th-rich, were deposited. Syntaxy between synchysite-(Ce) and parisite-(Ce) is very common owing to the similarity in structures, with alternating (001) layers of (CeF), (CO3) and (Ca). However, bastnasite-(Ce) occurs as individual crystals, overgrown by the synchysite and parisite polycrystals. Textural and chemical reactions between the REE fluorocarbonates provide insights into the mobility of rare-earth elements during fluid-rock interaction. The BIT complex is considered to be of potential economic interest for production of the rare-earth concentrates.
Resumo:
The Araes gold deposit, located in eastern Mato Grosso State, central Brazil, is hosted in Neoproterozoic volcanosedimentary rocks of the Paraguay belt, which formed during collision of the Amazonian craton and the Rio Apa block. Ar-40/Ar-39 geochronology and Pb and S isotopic analyses constrain the timing and sources of mineralization. Three biotite flakes from two samples of metavolcanic host rock yield Ar-40/Ar-39 plateau ages between 5941 and 531 Ma, interpreted as cooling ages following regional metamorphism. Clay minerals from a hydrothermal alteration zone yield an Ar-40/Ar-39 integrated age of 503 +/- 3 Ma. Galena grains from ore-bearing veins yield values of Pb-206/(204)pb from 17.952 to 18.383, Pb-207/Pb-204 from 15.156 to 15.811, and Pb-208/Pb-204 from 38.072 to 39.681. Pyrite grains from ore-bearing veins yield values of Pb-206/Pb-204 from 18.037 to 18.202, Pb-207/Pb-204 from 15.744 to 15.901., and Pb-208/(204)pb from 38.338 to 38.800. Pb isotope variations may be explained in terms of mixing a less radiogenic lead component (mu similar to 8.4) from mafic and ultramafic basement host-rocks (Nova Xavantina metavolcanosedimentary rocks) and a more radiogenic lead component (mu similar to 9.2) probably derived from supracrustal rocks (Cuiaba sedimentary groups). Sulfur isotope compositions are homogeneous, with delta S-34 values ranging from -1.1 parts per thousand to 0.9 parts per thousand (galena) and -0.7 parts per thousand to 0.9 parts per thousand (pyrite), suggesting a mantle-derived reservoir for the mineralizing solutions. Based on the Ar, Pb, and S isotope data, we suggest that the precious metals were remobilized from metavolcanic host rocks by hydrothermal solutions during Brasilide-Panafrican regional metamorphism. The Arabs gold deposit probably formed during a late stage of the orogeny, coeval with other mineralization events in the Paraguay Belt.
Resumo:
We introduce jump processes in R(k), called density-profile processes, to model biological signaling networks. Our modeling setup describes the macroscopic evolution of a finite-size spin-flip model with k types of spins with arbitrary number of internal states interacting through a non-reversible stochastic dynamics. We are mostly interested on the multi-dimensional empirical-magnetization vector in the thermodynamic limit, and prove that, within arbitrary finite time-intervals, its path converges almost surely to a deterministic trajectory determined by a first-order (non-linear) differential equation with explicit bounds on the distance between the stochastic and deterministic trajectories. As parameters of the spin-flip dynamics change, the associated dynamical system may go through bifurcations, associated to phase transitions in the statistical mechanical setting. We present a simple example of spin-flip stochastic model, associated to a synthetic biology model known as repressilator, which leads to a dynamical system with Hopf and pitchfork bifurcations. Depending on the parameter values, the magnetization random path can either converge to a unique stable fixed point, converge to one of a pair of stable fixed points, or asymptotically evolve close to a deterministic orbit in Rk. We also discuss a simple signaling pathway related to cancer research, called p53 module.
Resumo:
Flash points (T(FP)) of hydrocarbons are calculated from their flash point numbers, N(FP), with the relationship T(FP) (K) = 23.369N(FP)(2/3) + 20.010N(FP)(1/3) + 31.901 In turn, the N(FP) values can be predicted from experimental boiling point numbers (Y(BP)) and molecular structure with the equation N(FP) = 0.987 Y(BP) + 0.176D + 0.687T + 0.712B - 0.176 where D is the number of olefinic double bonds in the structure, T is the number of triple bonds, and B is the number of aromatic rings. For a data set consisting of 300 diverse hydrocarbons, the average absolute deviation between the literature and predicted flash points was 2.9 K.
Resumo:
We report a novel method for calculating flash points of acyclic alkanes from flash point numbers, N(FP), which can be calculated from experimental or calculated boiling point numbers (Y(BP)) with the equation N(FP) = 1.020Y(BP) - 1.083 Flash points (FP) are then determined from the relationship FP(K) = 23.369N(FP)(2/3) + 20.010N(FP)(1/3) + 31.901 For it data set of 102 linear and branched alkanes, the correlation of literature and predicted flash points has R(2) = 0.985 and an average absolute deviation of 3.38 K. N(FP) values can also be estimated directly from molecular structure to produce an even closer correspondence of literature and predicted FP values. Furthermore, N(FP) values provide a new method to evaluate the reliability of literature flash point data.
Resumo:
Flash points (T(FP)) of organic compounds are calculated from their flash point numbers, N(FP), with the relationship T(FP) = 23.369N(FP)(2/3) + 20.010N(FP)(1/3) + 31.901. In turn, the N(FP) values can be predicted from boiling point numbers (Y(BP)) and functional group counts with the equation N(FP) = 0.974Y(BP) + Sigma(i)n(i)G(i) + 0.095 where G(i) is a functional group-specific contribution to the value of N(FP) and n(i) is the number of such functional groups in the structure. For a data set consisting of 1000 diverse organic compounds, the average absolute deviation between reported and predicted flash points was less than 2.5 K.