5 resultados para 510 - Mathematik (Mathematics)
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A method for linearly constrained optimization which modifies and generalizes recent box-constraint optimization algorithms is introduced. The new algorithm is based on a relaxed form of Spectral Projected Gradient iterations. Intercalated with these projected steps, internal iterations restricted to faces of the polytope are performed, which enhance the efficiency of the algorithm. Convergence proofs are given and numerical experiments are included and commented. Software supporting this paper is available through the Tango Project web page: http://www.ime.usp.br/similar to egbirgin/tango/.
Resumo:
A group is said to have the R(infinity) property if every automorphism has an infinite number of twisted conjugacy classes. We study the question whether G has the R(infinity) property when G is a finitely generated torsion-free nilpotent group. As a consequence, we show that for every positive integer n >= 5, there is a compact nilmanifold of dimension n on which every homeomorphism is isotopic to a fixed point free homeomorphism. As a by-product, we give a purely group theoretic proof that the free group on two generators has the R(infinity) property. The R(infinity) property for virtually abelian and for C-nilpotent groups are also discussed.
Resumo:
We provide a characterization of the Clifford Torus in S(3) via moving frames and contact structure equations. More precisely, we prove that minimal surfaces in S(3) with constant contact angle must be the Clifford Torus. Some applications of this result are then given, and some examples are discussed.
Resumo:
Suppose that X and Y are Banach spaces isomorphic to complemented subspaces of each other. In 1996, W. T. Gowers solved the Schroeder- Bernstein Problem for Banach spaces by showing that X is not necessarily isomorphic to Y. However, if X-2 is complemented in X with supplement A and Y-2 is complemented in Y with supplement B, that is, { X similar to X-2 circle plus A Y similar to Y-2 circle plus B, then the classical Pelczynski`s decomposition method for Banach spaces shows that X is isomorphic to Y whenever we can assume that A = B = {0}. But unfortunately, this is not always possible. In this paper, we show that it is possible to find all finite relations of isomorphism between A and B which guarantee that X is isomorphic to Y. In order to do this, we say that a quadruple (p, q, r, s) in N is a P-Quadruple for Banach spaces if X is isomorphic to Y whenever the supplements A and B satisfy A(p) circle plus B-q similar to A(r) circle plus B-s . Then we prove that (p, q, r, s) is a P-Quadruple for Banach spaces if and only if p - r = s - q = +/- 1.
Resumo:
Analogous to *-identities in rings with involution we define *-identities in groups. Suppose that G is a torsion group with involution * and that F is an infinite field with char F not equal 2. Extend * linearly to FG. We prove that the unit group U of FG satisfies a *-identity if and only if the symmetric elements U(+) satisfy a group identity.