95 resultados para 3d Transition Metals

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We carried out a first principles investigation on the electronic properties and chemical trends of 3d transition metal related impurities in diamond. In terms of formation energy, the interstitial site is considerably more unfavorable than the substitutional or divacancy ones. Going from Ti to Ni, the 3d-related energy levels in the gap become deeper toward the valence band in all three sites. However, in the divacancy one, those levels cross with the divacancy-related ones, such that the electronic property of the center depends on the character of the highest occupied level. (C) 2009 Elsevier B.A. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The crystalline structure of transition-metals (TM) has been widely known for several decades, however, our knowledge on the atomic structure of TM clusters is still far from satisfactory, which compromises an atomistic understanding of the reactivity of TM clusters. For example, almost all density functional theory (DFT) calculations for TM clusters have been based on local (local density approximation-LDA) and semilocal (generalized gradient approximation-GGA) exchange-correlation functionals, however, it is well known that plain DFT fails to correct the self-interaction error, which affects the properties of several systems. To improve our basic understanding of the atomic and electronic properties of TM clusters, we report a DFT study within two nonlocal functionals, namely, the hybrid HSE (Heyd, Scuseria, and Ernzerhof) and GGA + U functionals, of the structural and electronic properties of the Co(13), Rh(13), and Hf(13) clusters. For Co(13) and Rh(13), we found that improved exchange-correlation functionals decrease the stability of open structures such as the hexagonal bilayer (HBL) and double simple-cubic (DSC) compared with the compact icosahedron (ICO) structure, however, DFT-GGA, DFT-GGA + U, and DFT-HSE yield very similar results for Hf(13). Thus, our results suggest that the DSC structure obtained by several plain DFT calculations for Rh(13) can be improved by the use of improved functionals. Using the sd hybridization analysis, we found that a strong hybridization favors compact structures, and hence, a correct description of the sd hybridization is crucial for the relative energy stability. For example, the sd hybridization decreases for HBL and DSC and increases for ICO in the case of Co(13) and Rh(13), while for Hf(13), the sd hybridization decreases for all configurations, and hence, it does not affect the relative stability among open and compact configurations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We performed a first principles total energy investigation on the structural, electronic, and magnetic properties of 3d-transition metal-encapsulated adamantane molecules (TM@C(10)H(16). with TM = Cr, Mn, Fe, Co, and Ni). We find that the C-C interactions are strong enough to maintain the molecular rigidity upon TM incorporation, although outward relaxations and formation energies are large. We built a microscopic model that explains the electronic structure of those molecules. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The addition of transition metals to III-V semiconductors radically changes their electronic, magnetic, and structural properties. We show by ab initio calculations that in contrast to the conventional semiconductor alloys, the lattice parameter in magnetic semiconductor alloys, including those with diluted concentration, strongly deviates from Vegard's law. We find a direct correlation between the magnetic moment and the anion-transition metal bond lengths and derive a simple and general formula that determines the lattice parameter of a particular magnetic semiconductor by considering both the composition and magnetic moment. This dependence can explain some experimentally observed anomalies and stimulate other kind of investigations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The diluted magnetic semiconductors are promising materials for spintronic applications. Usually one intents to find the ferromagnetic state but recently the antiferromagnetism (AFM) was proposed to have some advantages. In this work, we verify the possibility to obtain spin polarization with an AFM state. In particular, we studied GaN 5% double doped with two different transition metals atoms (Mn and Co or Cr and Ni), forming the Mn(x)Co(0.056-x)Ga(0.944)N and Cr(x)Ni(0.056-x)Ga(0.944)N quaternary alloys. In order to simulate these systems in a more realistic way, and take into account composition fluctuations, we adapted the generalized quasichemical approach to diluted alloys, which is used in combination with spin density-functional theory. We find that is possible to obtain an AFM ground state up to 70% spin polarization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Air pollution is associated with morbidity and mortality induced by respiratory diseases. However, the mechanisms therein involved are not yet fully clarified. Thus, we tested the hypothesis that a single acute exposure to low doses of fine particulate matter (PM2.5) may induce functional and histological lung changes and unchain inflammatory and oxidative stress processes. PM2.5 was collected from the urban area of Sao Paulo city during 24 h and underwent analysis for elements and polycyclic aromatic hydrocarbon contents. Forty-six male BALB/c mice received intranasal instillation of 30 mu L of saline (CTRL) or PM2.5 at 5 or 15 mu g in 30 mu L of saline (P5 and P15, respectively). Twenty-four hours later, lung mechanics were determined. Lungs were then prepared for histological and biochemical analysis. P15 group showed significantly increased lung impedance and alveolar collapse, as well as lung tissue inflammation, oxidative stress and damage. P5 presented values between CTRL and P15: higher mechanical impedance and inflammation than CTRL, but lower inflammation and oxidative stress than P15. In conclusion, acute exposure to low doses of fine PM induced lung inflammation, oxidative stress and worsened lung impedance and histology in a dose-dependent pattern in mice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

transition metals, which are involved in the pathological effects of PM. The objective of this study was to investigate the effects of intranasal administration of ROFA on pulmonary inflammation, pulmonary responsiveness, and excess mucus production in a mouse model of chronic pulmonary allergic inflammation. BALB/c mice received intraperitoneal injections of ovalbumin (OVA) solution (days 1 and 14). OVA challenges were performed on days 22, 24, 26, and 28. After the challenge, mice were intranasally instilled with ROFA. After forty-eight hours, pulmonary responsiveness was performed. Mice were sacrificed, and lungs were removed for morphometric analysis. OVA-exposed mice presented eosinophilia in the bronchovascular space (p < .001), increased pulmonary responsiveness (p < .001), and epithelial remodeling (p = .003). ROFA instillation increased pulmonary responsiveness (p = .004) and decreased the area of ciliated cells in the airway epithelium (p = .006). The combined ROFA instillation and OVA exposure induced a further increase in values of pulmonary responsiveness (p = .043) and a decrease in the number of ciliated cells in the airway epithelium (p = .017). PM exposure results in pulmonary effects that are more intense in mice with chronic allergic pulmonary inflammation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The introduction of high-permittivity gate dielectric materials into complementary metal oxide semiconductor technology has reopened the interest in Ge as a channel material mainly due to its high hole mobility. Since HfO(2) and ZrO(2) are two of the most promising dielectric candidates, it is important to investigate if Hf and Zr may diffuse into the Ge channel. Therefore, using ab initio density functional theory calculations, we have studied substitutional and interstitial Hf and Zr impurities in c-Ge, looking for neutral defects. We find that (i) substitutional Zr and Hf defects are energetically more favorable than interstitial defects; (ii) under oxygen-rich conditions, neither Zr nor Hf migration towards the channel is likely to occur; (iii) either under Hf- or Zr-rich conditions it is very likely, particularly for Zr, that defects will be incorporated in the channel.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cobalt-related impurity centers in diamond have been studied using first principles calculations. We computed the symmetry, formation and transition energies, and hyperfine parameters of cobalt impurities in isolated configurations and in complexes involving vacancies and nitrogen atoms. We found that the Co impurity in a divacant site is energetically favorable and segregates nitrogen atoms in its neighborhood. Our results are discussed in the context of the recently observed Co-related electrically active centers in synthetic diamond.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of palladium(II) thiosaccharinates with triphenylphosphane (PPh(3)), bis(diphenylphosphanyl)methane (dppm), and bis(diphenylphosphanyl)ethane (dppe) have been prepared and characterized. From mixtures of thiosaccharin, Htsac, and palladium(II) acetylacetonate, Pd(acac)(2), the palladium(II) thiosaccharinate, Pd(tsac)(2) (tsac: thiosaccharinate anion) (1) was prepared. The reaction of I with PPh(3), dppm, and dppe leads to the mononuclear species Pd(tsac)(2)(PPh(3))(2)center dot MeCN (2), [Pd(tsac)(2)(dppm)] (3), Pd(tsac)(2)(dppm)(2) (4), and [Pd(tsac)(2)(dppe)]center dot MeCN (5). Compounds 2, 4, and 5 have been prepared also by the reaction of Pd(acac)(2) with the corresponding phosphane and Htsac. All the new complexes have been characterized by chemical analysis, UV/Vis, IR, and Raman spectroscopy. Some of them have been also characterized by NMR spectroscopy. The crystalline structures of complexes 3, and 5 have been studied by X-ray diffraction techniques. Complex 3 crystallizes in the monoclinic space group P2(1)/n with a = 16.3537(2), b = 13.3981(3), c = 35.2277(7) angstrom, beta = 91.284(1)degrees, and Z = 8 molecules per unit cell, and complex 5 in P2(1)/n with a = 10.6445(8), b = 26.412(3), c = 15.781(2) angstrom, beta = 107.996(7)degrees, and Z = 4. In compounds 3 and 5, the palladium ions are in a distorted square planar environment. They are closely related, having two sulfur atoms of two thiosaccharinate anions, and two phosphorus atoms of one molecule of dppm or dppe, respectively, bonded to the Pd(II) atom. The molecular structure of complex 3 is the first reported for a mononuclear Pd(II)-dppm-thionate system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electrochemical oxidation of anodic metal (cobalt, nickel, copper, zinc and cadmium) in an acetonitrile solution of the Schiff-base ligand 2-(tosylamino)-N-[2-(tosylamino)-benzylidene] aniline (H(2)L) afforded the homoleptic compounds [ML]. The addition of 1,1-diphenylphosphanylmethane (dppm), 2,2`-bipyridine (bipy) or 1,10-phenanthroline (phen) to the electrolytic phase gave the heteroleptic complexes [NiL(dppm)], [ML(bipy)] and [ML(phen)]. The crystal structures of H(2)L (1), [NiL] (2), [CuL] (3), [NiL(dppm)] (4), [CoL(phen)] (5), [CuL(bipy)] (6) and [Zn(Lphen)] (7) were determined by X-ray diffraction. The homoleptic compounds [NiL] and [CuL] are mononuclear with a distorted square planar [MN(3)O] geometry with the Schiff base acting as a dianionic (N(amide)N(amide)N(imine)O(tosyl)) tetradentate ligand. Both compounds exhibit an unusual pi-pi stacking interaction be-tween a six-membered chelate ring containing the metal and a phenylic ring of the ligand. In the heteroleptic complex [NiL(dppm)], the nickel atom is in a distorted tetrahedral [NiN(3)P] environment defined by the imine, two amide nitrogen atoms of the L(2-) dianionic tridentate ligand and one of the phosphorus atoms of the dppm molecule. In the other heteroleptic complexes, [CoL(phen)], [CuL(bipy)] and [ZnL(phen)], the metal atom is in a five-coordinate environment defined by the imine, two amide nitrogen atoms of the dianionic tridentate ligand and the two bipyridine or phenanthroline nitrogen atoms. The compounds were characterized by microanalysis, IR and UV/Vis (Co, Ni and Cu complexes) spectroscopy, FAB mass spectrometry and (1)H NMR ([NiL] and Zn and Cd complexes) and EPR spectroscopy (Cu complexes).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diorganomanganese compounds react with aryl, vinyl, and alkynyl tellurides in a tellurium/manganese exchange reaction. The new mixed organomanganese reagents react selectively with electrophiles. (C) 2010 Published by Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The adsorption of pyridine (py) on Fe, Co, Ni and Ag electrodes was studied using surface-enhanced Raman scattering (SERS) to gain insight into the nature of the adsorbed species. The wavenumber values and relative intensities of the SERS bands were compared to the normal Raman spectrum of the chemically prepared transition metal complexes. Raman spectra of model clusters M(4)(py) (four metal atoms bonded to one py moiety) and M(4)(alpha-pyridil) where M = Ag, Fe, Co or Ni were calculated by density functional theory (DFT) and used to interpret the experimental SERS results. The similarity of the calculated M(4)(py) spectra with the experimental SERS spectra confirm the molecular adsorption of py on the surface of the metallic electrodes. All these results exclude the formation of adsorbed alpha-pyridil species, as suggested previously. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The adsorption of 4-aminopyridine (4-AP) on Co and Ag electrodes in acid or alkaline solutions of KCl and KI electrolyte salts were monitored by the Surface-enhanced Raman Spectroscopy (SERS) technique. The SERS intensity for the Ag electrode was in 2 orders of magnitude higher than for the Co electrode, due to the enhancement of the Raman cross-section on Ag by the surface-plasmon excitation. In acidic chloride medium (pH 4), the SERS results for Ag electrodes indicate that the protonated form of 4-AP (4-APH(+)) adsorbs in the potential range of -0.1 to -0.6 V (Ag broken vertical bar AgCl broken vertical bar KCl sat) through hydrogen-bonding between 4-APH(+) and Cl(-) adsorbed on the electrode surface: at more negative potentials the neutral form 4-AP is the predominant adsorbed species. For Co electrode in the same medium, only bands due to neutral 4-AP were observed in the spectra at -0.8 and -0.9 V. For more negative potentials bands assigned to both 4-AP and 4-AP surface complex are observed, with the lasts being enhanced, as the potentials are turned more negative. In alkaline chloride medium (pH 13), for less negative potentials the bands assigned to free 4-AP were observed in the spectra of both Ag and Co surfaces. For more negative potentials, only bands assigned to the 4-AP surface complex were observed. For 0.1 mol L(-1) KI acidic or alkaline solutions, bands assigned to 4-AP and 4-APH(+) were observed in a wider potential range than in chloride solutions. An adsorption scheme of 4-AP on Ag and Co is proposed for acidic and alkaline solutions. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We measured the activity of electrocatalysts, comprising Pt monolayers deposited on PdCo/C substrates with several Pd/Co atomic ratios, in the oxygen reduction reaction in alkaline solutions. The PdCo/C substrates have a core-shell structure wherein the Pd atoms are segregated at the particle`s surface. The electrochemical measurements were carried out using an ultrathin film rotating disk-ring electrode. Electrocatalytic activity for the O-2 reduction evaluated from the Tafel plots or mass activities was higher for Pt monolayers on PdCo/C compared to Pt/C for all atomic Pd/Co ratios we used. We ascribed the enhanced activity of these Pt monolayers to a lowering of the bond strength of oxygenated intermediates on Pt atoms facilitated by changes in the 5d-band reactivity of Pt. Density functional theory calculations also revealed a decline in the strength of PtOH adsorption due to electronic interaction between the Pt and Pd atoms. We demonstrated that very active O-2 reduction electrocatalysts can be devised containing only a monolayer Pt and a very small amount of Pd alloyed with Co in the substrate.