109 resultados para 2,4-dichlorophenoxyacetic acid
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Surface-enhanced Raman scattering (SERS) spectra of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was obtained by employing a bi-layer gold substrate, assembled by the reduction of Au(III) over gold-seeded nanoparticles immobilized on functionalized glass substrates. The SERS signal was linear with the logarithm of the solution concentrations between 1.0 x 10(-7) mol L(-1) and 1.0 x 10(-3) mol L(-1), indicating that the bi-layer gold substrate affords a significant dynamic range for SERS, providing an excellent analytical response within this concentration range, and revealing the high sensitivity of the gold surface towards such analyte. In addition, using the same gold substrate, a similar calibration curve was obtained for crystal-violet (CV), and it was possible to identify the concentration limit corresponding to the transition from the average SERS to the nonlinear SERS response. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This work investigates the formation of self-assembled monolayers (SAMs) of cystamine and cystamine-glutaraldehyde on a screen-printed electrode, and the immobilization of the Tc85 protein (from Trypanosoma cruzi) on these monolayers. The methods used included infrared techniques, cyclic voltammetry, and electrochemical impedance spectroscopy. The electrochemical studies were performed at pH 6.9 in 0.1 mol L(-1) phosphate buffer solution containing Fe(CN)(6)(-3/-4) redox species. The surface coverage (0) of the electrode was 0.10 (cystamine), 0.35 (cystamine-glutaraldehyde) and 0.84 (Tc85). Interpretation of electrochemical impedance spectroscopy results was based on a charge-transfer reaction involving Fe(CN)(6)(-3/-4) species at high frequencies, followed by a diffusion through the monolayers at lower frequencies. Estimates of the electrode surface coverage, active site radius, and distance between two adjacent sites assumed that charge transfer occurred at the active sites, and that there was a planar diffusion of redox species to these sites. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The present study describes the direct regeneration of protocorm-like bodies (PLBs) in leaf explants of the tropical species Oncidium flexuosum. The explants were inoculated in a solid, modified Murashige and Skoog (MS) medium with different concentrations of the growth regulator thidiazuron (TDZ) and with or without 2,4-dichlorophenoxyacetic acid (2,4-D) and naphthalene acetic acid (NAA), and kept away from light or in a 16-h photoperiod. The presence of auxins, 2,4-D, and NAA inhibited the formation of PLBs. The highest frequency of explants that regenerated PLBs (80%) was obtained when they were maintained in a culture medium containing 1.5 mu M TDZ under dark conditions. In the same culture medium but under a 16-h photoperiod, 95% of the leaf explants presented necrosis. Therefore, darkness was crucial for the regeneration of PLBs in O. flexuosum leaf explants, which is in disagreement with the literature. PLBs developed from the division of epidermal and subepidermal cells mainly on the adaxial side of the apex region of the explant. Plants with well-developed leaves and roots grew after the PLBs were transferred to growth regulator-free medium under a 16-h photoperiod.
Resumo:
The objective of the present work was to induce somatic embryogenesis from zygotic embryos of Passiflora cincinnata Masters. Zygotic embryos formed calli on media with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.5 mu M benzyladenine (BA) after 30 days of in vitro culture. A concentration of 18.1 mu M 2,4-D resulted in the largest number of somatic embryos. Embryogenic calli were yellowish and friable, forming whitish proembryogenic masses. Morphologically, embryogenic cells were small and had large nuclei and dense cytoplasm, whereas non-embryogenic cells were elongated, with small nuclei and less dense cytoplasm. Calli cultured under white light on basal Murashige and Skoog`s medium with activated charcoal produced embryos in all developmental stages. There were differences among the treatments, with some leading to the production of calli with embryos and some only to callus formation. Some abnormalities were associated with somatic embryos, including fused axes, fused cotyledons and polycotyledonary embryos. Production of secondary somatic embryos occurred in the first cycle of primary embryo development. Secondary embryos differentiated from the surface of the protodermal layer of primary embryos with intense cell proliferation, successive mitotic divisions in the initial phase of embryoid development, and a vascular system formed with no connection to the parental tissue. This secondary embryogenic system of P. cincinnata is characterized by intense proliferation and maintenance of embryogenic competence after successive subcultures. This reproducible protocol opens new prospects for massive propagation and is an alternative to the current organogenesis-based transformation protocol.
Resumo:
It is well established that L-proline has several roles in the biology of trypanosomatids. In Trypanosoma cruzi, the etiological agent of Chagas' disease, this amino acid is involved in energy metabolism, differentiation processes and resistance to osmotic stress. In this study, we analyzed the effects of interfering with L-proline metabolism on the viability and on other aspects of the T. cruzi life cycle using the proline analogue L- thiazolidine-4-carboxylic acid (T4C). The growth of epimastigotes was evaluated using different concentrations of T4C in standard culture conditions and at high temperature or acidic pH. We also evaluated possible interactions of this analogue with stress conditions such as those produced by nutrient starvation and oxidative stress. T4C showed a dose-response effect on epimastigote growth (IC(50) = 0.89+/-0.02 mM at 28 degrees C), and the inhibitory effect of this analogue was synergistic (p<0.05) with temperature (0.54+/-0.01 mM at 37 degrees C). T4C significantly diminished parasite survival (p<0.05) in combination with nutrient starvation and oxidative stress conditions. Pre-incubation of the parasites with L-proline resulted in a protective effect against oxidative stress, but this was not seen in the presence of the drug. Finally, the trypomastigote bursting from infected mammalian cells was evaluated and found to be inhibited by up to 56% when cells were treated with non-toxic concentrations of T4C (between 1 and 10 mM). All these data together suggest that T4C could be an interesting therapeutic drug if combined with others that affect, for example, oxidative stress. The data also support the participation of proline metabolism in the resistance to oxidative stress.
Resumo:
The title compound, C(9)H(8)O(2)S(2), can be used as a chain transfer agent and may be used to control the behavior of polymerization reactions. O-H center dot center dot center dot O hydrogen bonds of moderate character link the molecules into dimers. In the crystal, the dimers are linked into sheets by C-H center dot center dot center dot O interactions, forming R(4)(2)(12) and R(2)(2)(8) edge-fused rings running parallel to [101]. There are no intermolecular interactions involving the S atoms.
Resumo:
The electrochemical oxidation of ethanol at Sn((1-x))Ir (x) O(2) electrodes (with x = 0.01, 0.05, 0.1 and 0.3) was studied in 0.1 mol L(-1) HClO(4) solution. Electrolysis experiments were carried out and the reaction products were analyzed by Liquid Chromatography. It was found that the amounts of the reaction products depended on the composition of the electrode. In situ infrared reflectance spectroscopy measurements were performed to identify the adsorbed intermediates and to postulate a reaction mechanism for ethanol electrooxidation on these electrode materials. As evidence, acetaldehyde and acetic acid were formed through a successive reaction process. Carbon dioxide was also identified as the end product, showing that the cleavage of the carbon-carbon bond occurred. These results indicate that the synthesized catalysts are able to lead to the total combustion of organic compounds. Analysis of the water bending band at different potentials illustrated its role at the electrode interface.
Resumo:
We studied the expression pattern of cell adhesion molecules associated to transendothelial migration of leukocytes in different lung`s vascular compartments after administration of a magnetic fluid sample containing maghemite nanoparticles surface-coated with meso-2,3-dimercaptosuccinic acid. The analyses were conducted in mice 4 and 12 h after endovenous administration of the magnetic fluid in control mice. Firstly, the migratory activity of leukocytes after magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration was confirmed using broncho-alveolar lavage and light microscopy. Then, the expression of cell adhesion molecules in the lung`s vascular compartments was investigated by immunofluorescence microscopy of frozen sections, using antibodies against L-selectin, P-selectin, E-selectin, macrophage antigen-1, and leukocyte function associated antigen-1. L- and P-selectin showed similar pattern of expression in the pulmonary vasculature in animals treated with magnetic fluid and in the control group. In contrast, macrophage antigen-1 and leukocyte function associated antigen-1 were found in capillary only in animals treated with magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration. In addition, after magnetic fluid administration E-selectin was found in post-capillary sites. Our findings demonstrated that magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration exhibits modulation effects on expression patterns of E-selectin, macrophage antigen-1, and leukocyte function associated antigen-1 in the lung`s vascular compartments. These findings are very important in a strategy to reduce the potential toxicity of magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration for medical applications.
Resumo:
A short and efficient approach to a range of new chiral and achiral functionalized (E)-enaminopyran-2,4-diones starting with commercially available dehydroacetic acid is described. The phytotoxic properties of these (E)-enaminopyran-2,4-diones were evaluated by their ability to interfere with the growth of Sorghum bicolor and Cucumis sativus seedlings. A different sensitivity of the two crops was evident with the (E)-enaminopyran-2,4-diones. The most active compounds were also tested against two weeds, Ipomoea grandifolia and Brachiaria decumbens. To the best of our knowledge, this is the first report describing enaminopyran-2,4-diones as potential plant growth regulators.
Resumo:
The synthesis, an improved refined crystal and molecular structure re-determination, and the thermal decomposition behavior of two Zn(II) derivatives of isocinchomeronic acid (2,5-pyridinedicarboxylic acid or H(2)2,5-pydc) are presented. [Zn(2,5-pydc)(H(2)O)(3)Zn(2,5-pydc)(H(2)O)(2)](2) (1) crystallizes in the triclinic P-1 space group with a = 7.106(2), b = 11.450(2), c = 11.869(1) angstrom, alpha = 107.29(1), beta = 104.08(1), gamma = 90.32(2)degrees, and Z = 2. [Zn(2,5-pydc)(H(2)O)(2)] center dot H(2)O (2) is orthorhombic (P2(1)2(1)2(1) space group), with a = 7.342(1), b = 9.430(1), c = 13.834(2) angstrom, and Z = 4. The structures were refined to agreement R(1)-factors of 0.0315 (1) and 0.0336 (2). Complex (1) is arranged as molecular Zn(4)(2,5-pydc)(4)(H(2)O)(10) tetramers, the cages of which define channels that remain unblocked by anions. Compound (2) is polymeric with Zn(2,5-pydc)(H(2)O)(2) and Zn(2,5-pydc)(H(2)O)(3) units linked through bridging ligands. Both compounds were synthesized under mild conditions in aqueous media, without need to resort to hydrothermal media. Changing the pH from 4.51 to 5.75 suffices to direct the chemical processes toward the orthorhombic compound rather than to the triclinic one.
Resumo:
Lipid peroxidation produces a large number of reactive aldehydes as secondary products. We have previously shown that the reaction of cytochrome c with trans,trans-2, 4-decadienal (DDE), an aldehyde generated as a product of lipid peroxidation in cell membranes, results in the formation of adducts. Mass spectrometry analysis indicated that His-33, Lys-39, Lys-72 and Lys-100 in cytochrome c were modified by DDE. In the present work, we investigated the effect of DDE on isolated rat liver mitochondria. DDE (162 mu M) treatment increases the rate of mitochondrial oxygen consumption. Extensive mitochondrial swelling upon treatment with DDE (900 nM-162 mu M) was observed by light scattering and transmission electron microscopy experiments. DDE-induced loss of inner mitochondrial membrane potentials, monitored by safranin O fluorescence, was also observed. Furthermore, DDE-treated mitochondria showed an increase in lipid peroxidation, as monitored by MDA formation. These results suggest that reactive aldehydes promote mitochondrial dysfunction.
Resumo:
Nanosecond laser flash photolysis has been used to investigate injection and back electron transfer from the complex [(Ru-(bpy)(2)(4,4`-(PO(3)H(2))(2)bpy)](2+) surface-bound to TiO(2) (TiO(2)-Ru(II)). The measurements were conducted under conditions appropriate for water oxidation catalysis by known single-site water oxidation catalysts. Systematic variations in average lifetimes for back electron transfer,
Resumo:
The presence of paramagnetic species in the aqueous ring opening metathesis polymerizations of the exo,exo-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid monomer with RuCl(3) and K(2)[RuCl(5)H(2)O] compounds was studied using ESR techniques. It was observed that the intensities of the Ru(III) signals in the ESR spectra decrease on the time scale of the induction period so that the ROMP can take place. The intensity of the Ru(III) signal almost disappeared 50 min after reacting with K(2)[RuCl(5)H(2)O] and after 100 mm in the case of RuCl(3). Reactions of the cis-[Ru(NH(3))(4)(H(2)O)(2)](tfms)(3) and [Ru(NH(3))(5)H(2)O](tfms)(3) complexes with the monomer and different organic compounds representing the organic functions in the monomer (furan, norbornene, but-2-ene-1,4-diol and formic, acetic, oxalic and maleic acids) were also monitored by ESR and UV/vis spectra. It was deduced that the organic acids provide the disappearance of the Ru(III) signal. The proton NMR relaxation times of the residual water in D(2)O for reactions with oxalic acid suggested that the presence of paramagnetic ions in the solution decreases along with
Resumo:
Five previously synthesized 4-trifluoromethyl-2-(5-aryl-3-styryl-1H-pyrazol-1yl)-pyrimidines and six 5-aryl-3-styryl-1-carboxamidino-1H-pyrazole derivatives were screened for their antioxidant proprieties. The antioxidant activities were evaluated by using the DPPH and the HRP/luminol/H2O2 chemiluminescence assay systems and for their antimicrobial activity (MIC). The results were good for those series in some concentration in comparison with the standards.
Resumo:
The 1,3-dioxin-4-one ring in the title compound, C(16)H(16)O(3), is in a half-boat conformation with the quaternary O-C(CH(3))(2)-O atom lying 0.546 (1) angstrom out of the plane defined by the remaining five atoms. The crystal structure is consolidated by C-H center dot center dot center dot O contacts that lead to supramolecular layers.