3 resultados para 1467
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Visualization of high-dimensional data requires a mapping to a visual space. Whenever the goal is to preserve similarity relations a frequent strategy is to use 2D projections, which afford intuitive interactive exploration, e. g., by users locating and selecting groups and gradually drilling down to individual objects. In this paper, we propose a framework for projecting high-dimensional data to 3D visual spaces, based on a generalization of the Least-Square Projection (LSP). We compare projections to 2D and 3D visual spaces both quantitatively and through a user study considering certain exploration tasks. The quantitative analysis confirms that 3D projections outperform 2D projections in terms of precision. The user study indicates that certain tasks can be more reliably and confidently answered with 3D projections. Nonetheless, as 3D projections are displayed on 2D screens, interaction is more difficult. Therefore, we incorporate suitable interaction functionalities into a framework that supports 3D transformations, predefined optimal 2D views, coordinated 2D and 3D views, and hierarchical 3D cluster definition and exploration. For visually encoding data clusters in a 3D setup, we employ color coding of projected data points as well as four types of surface renderings. A second user study evaluates the suitability of these visual encodings. Several examples illustrate the framework`s applicability for both visual exploration of multidimensional abstract (non-spatial) data as well as the feature space of multi-variate spatial data.
Resumo:
Moving-least-squares (MLS) surfaces undergoing large deformations need periodic regeneration of the point set (point-set resampling) so as to keep the point-set density quasi-uniform. Previous work by the authors dealt with algebraic MLS surfaces, and proposed a resampling strategy based on defining the new points at the intersections of the MLS surface with a suitable set of rays. That strategy has very low memory requirements and is easy to parallelize. In this article new resampling strategies with reduced CPU-time cost are explored. The basic idea is to choose as set of rays the lines of a regular, Cartesian grid, and to fully exploit this grid: as data structure for search queries, as spatial structure for traversing the surface in a continuation-like algorithm, and also as approximation grid for an interpolated version of the MLS surface. It is shown that in this way a very simple and compact resampling technique is obtained, which cuts the resampling cost by half with affordable memory requirements.
Resumo:
We consider the issue of performing residual and local influence analyses in beta regression models with varying dispersion, which are useful for modelling random variables that assume values in the standard unit interval. In such models, both the mean and the dispersion depend upon independent variables. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes. An application using real data is presented and discussed.