270 resultados para mechanical methods
Resumo:
In this work, the applicability of a new algorithm for the estimation of mechanical properties from instrumented indentation data was studied for thin films. The applicability was analyzed with the aid of both three-dimensional finite element simulations and experimental indentation tests. The numerical approach allowed studying the effect of the substrate on the estimation of mechanical properties of the film, which was conducted based on the ratio h(max)/l between maximum indentation depth and film thickness. For the experimental analysis, indentation tests were conducted on AISI H13 tool steel specimens, plasma nitrated and coated with TiN thin films. Results have indicated that, for the conditions analyzed in this work, the elastic deformation of the substrate limited the extraction of mechanical properties of the film/substrate system. This limitation occurred even at low h(max)/l ratios and especially for the estimation of the values of yield strength and strain hardening exponent. At indentation depths lower than 4% of the film thickness, the proposed algorithm estimated the mechanical properties of the film with accuracy. Particularly for hardness, precise values were estimated at h(max)/l lower than 0.1, i.e. 10% of film thickness. (C) 2010 Published by Elsevier B.V.
Resumo:
In the unlubricated sliding wear of steels the mild-severe and severe-mild wear transitions have long been investigated. The effect of system inputs such as normal load, sliding speed, environment humidity and temperature, material properties, among others, on those transitions have also been studied. Although transitions seem to be caused by microstructural changes, surfaces oxidation and work-hardening, some questions remain regarding the way each aspect is involved. Since the early studies in sliding wear, it has usually been assumed that only the material properties of the softer body influence the wear behavior of contacting surfaces. For example, the Archard equation involves only the hardness of the softer body, without considering the hardness of the harder body. This work aims to discuss the importance of the harder body hardness in determining the wear regime operation. For this, pin-on-disk wear tests were carried out, in which the disk material was always harder than the pin material. Variations of the friction force and vertical displacement of the pin were registered during the tests. A material characterization before and after tests was conducted using stereoscopy and scanning electron microscopy (SEM) methods, in addition to mass loss, surface roughness and microhardness measurements. The wear results confirmed the occurrence of a mild-severe wear transition when the disk hardness was decreased. The disk hardness to pin hardness ratio (H(d)/H(p)) was used as a criterion to establish the nature of surface contact deformation and to determine the wear regime transition. A predominantly elastic or plastic contact, characterized by H(d)/H(p) values higher or lower than one, results in a mild or severe wear regime operation, respectively. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
The motivation for this research is to make a comparison between dynamic results of a free railway wheelset derailment and safety limits. For this purpose, a numerical simulation of a wheelset derailment submitted to increasing lateral force is used to compare with the safety limit, using different criteria. A simplified wheelset model is used to simulate derailments with different adhesion conditions. The contact force components, including the longitudinal and spin effects, are identified in a steady-state condition on the verge of a derailment. The contact force ratios are used in a three-dimensional (3D) analytical formula to calculate the safety limits. Simulation results obtained with two contact methods were compared with the published results and the safety limit was identified with the two criteria. Results confirm Nadal`s conservative aspect and show that safety 3D analytical formula presents slightly higher safety limits for lower friction coefficients and smaller limits for high friction, in comparison with the simulation results with Fastsim.
Resumo:
The properties of recycled aggregate produced from mixed (masonry and concrete) construction and demolition (C&D) waste are highly variable, and this restricts the use of such aggregate in structural concrete production. The development of classification techniques capable of reducing this variability is instrumental for quality control purposes and the production of high quality C&D aggregate. This paper investigates how the classification of C&D mixed coarse aggregate according to porosity influences the mechanical performance of concrete. Concretes using a variety of C&D aggregate porosity classes and different water/cement ratios were produced and the mechanical properties measured. For concretes produced with constant volume fractions of water, cement, natural sand and coarse aggregate from recycled mixed C&D waste, the compressive strength and Young modulus are direct exponential functions of the aggregate porosity. Sink and float technique is a simple laboratory density separation tool that facilitates the separation of cement particles with lower porosity, a difficult task when done only by visual sorting. For this experiment, separation using a 2.2 kg/dmA(3) suspension produced recycled aggregate (porosity less than 17%) which yielded good performance in concrete production. Industrial gravity separators may lead to the production of high quality recycled aggregate from mixed C&D waste for structural concrete applications.
Resumo:
This paper compares the critical impeller speed results for 6 L Denver and Wemco bench-scale flotation cells with findings from a study by Van der Westhuizen and Deglon [Van der Westhuizen, A.P., Deglon, D.A., 2007. Evaluation of solids suspension in a pilot-scale mechanical flotation cell: the critical impeller speed. Minerals Engineering 20,233-240; Van der Westhuizen, A.P., Deglon, D.A., 2008. Solids suspension in a pilot scale mechanical flotation cell: a critical impeller speed correlation. Minerals Engineering 21, 621-629] conducted in a 125 L Batequip flotation cell. Understanding solids suspension has become increasingly important due to dramatic increases in flotation cell sizes. The critical impeller speed is commonly used to indicate the effectiveness of solids suspension. The minerals used in this study were apatite, quartz and hematite. The critical impeller speed was found to be strongly dependent on particle size, solids density and air flow rate, with solids concentration having a lesser influence. Liquid viscosity was found to have a negligible effect. The general Zwietering-type critical impeller speed correlation developed by Van der Westhuizen and Deglon [Van der Westhuizen, A.P., Deglon, D.A., 2008. Solids suspension in a pilot scale mechanical flotation cell: a critical impeller speed correlation. Minerals Engineering 21, 621-629] was found to be applicable to all three flotation machines. The exponents for particle size, solids concentration and liquid viscosity were equivalent for all three cells. The exponent for solids density was found to be less significant than that obtained by the previous authors, and to be consistent with values reported in the general literature for stirred tanks. Finally, a new dimensionless critical impeller speed correlation is proposed where the particle size is divided by the impeller diameter. This modified equation generally predicts the experimental measurements well, with most predictions within 10% of the experimental. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Load cells are used extensively in engineering fields. This paper describes a novel structural optimization method for single- and multi-axis load cell structures. First, we briefly explain the topology optimization method that uses the solid isotropic material with penalization (SIMP) method. Next, we clarify the mechanical requirements and design specifications of the single- and multi-axis load cell structures, which are formulated as an objective function. In the case of multi-axis load cell structures, a methodology based on singular value decomposition is used. The sensitivities of the objective function with respect to the design variables are then formulated. On the basis of these formulations, an optimization algorithm is constructed using finite element methods and the method of moving asymptotes (MMA). Finally, we examine the characteristics of the optimization formulations and the resultant optimal configurations. We confirm the usefulness of our proposed methodology for the optimization of single- and multi-axis load cell structures.
Resumo:
A study on the use of artificial intelligence (AI) techniques for the modelling and subsequent control of an electric resistance spot welding process (ERSW) is presented. The ERSW process is characterized by the coupling of thermal, electrical, mechanical, and metallurgical phenomena. For this reason, early attempts to model it using computational methods established as the methods of finite differences, finite element, and finite volumes, ask for simplifications that lead the model obtained far from reality or very costly in terms of computational costs, to be used in a real-time control system. In this sense, the authors have developed an ERSW controller that uses fuzzy logic to adjust the energy transferred to the weld nugget. The proposed control strategies differ in the speed with which it reaches convergence. Moreover, their application for a quality control of spot weld through artificial neural networks (ANN) is discussed.
Resumo:
Micro-tools offer significant promise in a wide range of applications Such as cell Manipulation, microsurgery, and micro/nanotechnology processes. Such special micro-tools consist of multi-flexible structures actuated by two or more piezoceramic devices that must generate output displacements and forces lit different specified points of the domain and at different directions. The micro-tool Structure acts as a mechanical transformer by amplifying and changing the direction of the piezoceramics Output displacements. The design of these micro-tools involves minimization of the coupling among movements generated by various piezoceramics. To obtain enhanced micro-tool performance, the concept of multifunctional and functionally graded materials is extended by, tailoring elastic and piezoelectric properties Of the piezoceramics while simultaneously optimizing the multi-flexible structural configuration using multiphysics topology optimization. The design process considers the influence of piezoceramic property gradation and also its polarization sign. The method is implemented considering continuum material distribution with special interpolation of fictitious densities in the design domain. As examples, designs of a single piezoactuator, an XY nano-positioner actuated by two graded piezoceramics, and a micro-gripper actuated by three graded piezoceramics are considered. The results show that material gradation plays an important role to improve actuator performance, which may also lead to optimal displacements and coupling ratios with reduced amount of piezoelectric material. The present examples are limited to two-dimensional models because many of the applications for Such micro-tools are planar devices. Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
In this paper, processing methods of Fourier optics implemented in a digital holographic microscopy system are presented. The proposed methodology is based on the possibility of the digital holography in carrying out the whole reconstruction of the recorded wave front and consequently, the determination of the phase and intensity distribution in any arbitrary plane located between the object and the recording plane. In this way, in digital holographic microscopy the field produced by the objective lens can be reconstructed along its propagation, allowing the reconstruction of the back focal plane of the lens, so that the complex amplitudes of the Fraunhofer diffraction, or equivalently the Fourier transform, of the light distribution across the object can be known. The manipulation of Fourier transform plane makes possible the design of digital methods of optical processing and image analysis. The proposed method has a great practical utility and represents a powerful tool in image analysis and data processing. The theoretical aspects of the method are presented, and its validity has been demonstrated using computer generated holograms and images simulations of microscopic objects. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The influence of the addition of high-impact polystyrene (HIPS) on polypropylene (PP) photodegradation was studied with blends obtained by extrusion with and without styrene-butadiene-styrene (SBS) copolymer (10 wt % with respect to the dispersed phase). The concentrations of HIPS ranged from 10 to 30 wt %. The blends and pure materials were exposed for periods of up to 15 weeks of UV irradiation; their mechanical properties (tensile and impact), fracture surface, and melt flow indices were monitored. After 3 weeks of UV exposure, all of the materials presented mechanical properties of the same order of magnitude. However, for times of exposure greater than 3 weeks, an increasing concentration of HIPS resulted in a better photostability of PP. These results were explained in light of morphological observations. This increase of photostability was even greater when SBS was added to the blends. It was more difficult to measure the melt flow index of the binary PP/HIPS blends than that of PP for low concentrations of HIPS; this was most likely due to energy transfer between the blend domains during photodegradation. This phenomenon was not observed for the ternary blends. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 120: 770-779, 2011
Resumo:
Alpha prime formation leads to material embrittlement and deterioration of corrosion resistance. In the present study, the mechanical and corrosion behavior of super duplex stainless steel UNS S32520 aged at 475 degrees C from 0.5 h to 1,032 h was evaluated using microhardness measurements, Charpy impact tests, electrochemical impedance spectroscopy, and cyclic polarization curves. The sensibility of these tests to the effects of alpha prime phase was investigated. The microhardness test showed a gradual increase in hardness with aging time, whereas the impact tests revealed losses of about 80% in the energy absorption capacity for the material aged for 12 h in comparison with the solution-annealed samples. The most responsive analysis was the impact test, which indirectly revealed the presence of this deleterious phase in samples aged for 0.5 h. The electrochemical impedance spectroscopy and polarization tests were not highly sensitive to the alpha prime phase unless these are present in large amounts in the stainless steel.
Resumo:
A brief look at the history of fractography has shown a recent trend in the quantification of topographic parameters through the use of three-dimensional reconstruction techniques, which associate SEM stereoscopy and stereophotogrammetry software, allowing the calculation of the elevation measurement at numerous points of the topography due to the parallax that takes place during the tilting of the sample along the microscope eucentric plane. Several investigators have used reconstruction techniques to correlate some fractographic parameters, such as fractal dimension and fractured to projected area ratio, to the mechanical properties of materials, such as fracture toughness and tensile strength. So far, the search for a clear relationship between the fracture topography and mechanical properties has provided ambiguous results. The present work applied a surface metrology software to reconstruct three-dimensionally fracture surfaces (transgranular cleavage, intergranular and dimple fracture), corrosion pits and tribo-surfaces in order to explore the potential of this stereophotogrammetry technique. The existence of a variation in the calculated topographic parameters with the conditions of SEM image acquisition reinforces the importance of both good image acquisition and accurate calibration methods in order to validate this 3D reconstruction technique in metrological terms. Preliminary results did not indicate the existence of a clear relationship between either the true to project area ratio and CVN absorbed energy or the fractal dimension and CVN absorbed energy. It is likely that each fracture mechanism presents a proper relationship between the fractographic parameters and mechanical properties. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Polyurethane composites reinforced with curaua fiber at 5, 10 and 20% mass/mass proportions were prepared by using the conventional melt-mixing method. The influence of curaua fibers on the thermal behavior and polymer cohesiveness in polyurethane matrix was evaluated by dynamic mechanical thermal analysis (DMTA) and by differential scanning calorimetry (DSC). This specific interaction between the fibers and the hard segment domain was influenced by the behavior of the storage modulus E` and the loss modulus EaEuro(3) curves. The polyurethane PU80 is much stiffer and resistant than the other composites at low temperatures up to 70A degrees C. All samples were thermoplastic and presented a rubbery plateau over a wide temperature range above the glass transition temperature and a thermoplastic flow around 170A degrees C.
Resumo:
Mechanical blocking of the columnar front during the columnar to equiaxed transition (CET) is studied by quantitatively comparing the CET positions obtained with one stochastic model and two deterministic models for the unidirectional solidification of an Al-7 (wt pct) Si alloy. One of the deterministic models is based on the solutal blocking of the columnar front, whereas the other model is based on the mechanical blocking. The solutal-blocking model and the mechanical-blocking model with the traditional blocking fraction of 0.49 give columnar zones larger than those predicted with the stochastic model. When a blocking fraction of 0.2 is adopted, however, the agreement is very good for a range of nucleation undercoolings and number density of equiaxed grains. Therefore, changing the mechanical-blocking fraction in deterministic models from 0.49 to 0.2 seems to model more accurately the mechanical-blocking process that can lead to the CET.
Resumo:
Several composites based on high-density polyethylene (PE), organically modified montmorillonite (OMMT) and ethylene/methacrylic acid copolymer (EMAA) were prepared by melt compounding. Three Na(+)-montmorillonites (MMT) of different precedence were modified with hexadecyl trimethyl ammonium chloride in order to change their nature from hydrophilic to organophilic. The composites morphology was examined by XRD, SEM and TEM. Mechanical properties were evaluated under static conditions. A slight reinforcement was achieved only when OMMT was added to PE. When EMAA was added to the composites, it negatively interacted with OMMT, diminishing the interlayer distance of OMMT, changing the composite morphology, as if OMMT was not present in composites, and deteriorating their mechanical properties. (C) 2008 Elsevier Ltd. All rights reserved.