627 resultados para humification degrees
Resumo:
The Jensen theorem is used to derive inequalities for semiclassical tunneling probabilities for systems involving several degrees of freedom. These Jensen inequalities are used to discuss several aspects of sub-barrier heavy-ion fusion reactions. The inequality hinges on general convexity properties of the tunneling coefficient calculated with the classical action in the classically forbidden region.
Resumo:
This work describes an easy synthesis (one pot) of MFe(2)O(4) (M = Co, Fe, Mn, and Ni) magnetic nanoparticles MNPs by the thermal decomposition of Fe(Acac)(3)/M(Acac)(2) by using BMI center dot NTf(2) (1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) or BMI center dot PF(6) (1-n-butyl-3-methylimidazolium hexafluorophosphate) ionic liquids (ILs) as recycling solvents and oleylamine as the reducing and surface modifier agent. The effects of reaction temperature and reaction time on the features of the magnetic nanomaterials (size and magnetic properties) were investigated. The growth of the MNPs is easily controlled in the IL by adjusting the reaction temperature and time, as inferred from Fe(3)O(4) MNPs obtained at 150 degrees C, 200 degrees C and 250 degrees C with mean diameters of 8, 10 and 15 nm, respectively. However, the thermal decomposition of Fe(Acac)(3) performed in a conventional high boiling point solvent (diphenyl ether, bp 259 degrees C), under a similar Fe to oleylamine molar ratio used in the IL synthesis, does not follow the same growth mechanism and rendered only smaller NPs of 5 nm mean diameter. All MNPs are covered by at least one monolayer of oleylamine making them readily dispersible in non-polar solvents. Besides the influence on the nanoparticles growth, which is important for the preparation of highly crystalline MNPs, the IL was easily recycled and has been used in at least 20 successive syntheses.
Resumo:
An effective treatment of the intramolecular degrees of freedom is presented for water, where these modes are decoupled from the intermolecular ones, ""adiabatically"" allowing these coordinates to be positioned at their local minimum of the potential energy surface. We perform ab initio Monte Carlo simulations with the configurational energies obtained via density functional theory. We study a water dimer as a prototype system, and even in this simple case the intramolecular relaxations are very important to properly describe properties such as the dipole moment. We show that rigid simulations do not correctly sample the phase space, resulting in an average dipole moment smaller than the one obtained with the adiabatic model, which is closer to the experimental result. (c) 2008 American Institute of Physics.
Resumo:
NiCl(2)-4SC(NH(2))(2) (known as DTN) is a spin-1 material with a strong single-ion anisotropy that is regarded as a new candidate for Bose-Einstein condensation (BEC) of spin degrees of freedom. We present a systematic study of the low-energy excitation spectrum of DTN in the field-induced magnetically ordered phase by means of high-field electron spin resonance measurements at temperatures down to 0.45 K. We argue that two gapped modes observed in the experiment can be consistently interpreted within a four-sublattice antiferromagnet model with a finite interaction between two tetragonal subsystems and unbroken axial symmetry. The latter is crucial for the interpretation of the field-induced ordering in DTN in terms of BEC.
Resumo:
The quasi-elastic excitation function for the (17)O+(64)Zn system was measured at energies near and below the Coulomb barrier, at the backward angle theta(lab) = 161 degrees. The corresponding quasi-elastic barrier distribution was derived. The excitation function for the neutron stripping reactions was also measured, at the same angle and energies, and the experimental values of the spectroscopic factors were deduced by fitting the data. A reasonably good agreement was obtained between the experimental quasi-elastic barrier distribution with the coupled-channel calculations including a very large number of channels. Of the channels investigated, three dominated the coupling matrix: two inelastic channels, (64)Zn(2(1)(+)) and (17)O(1/(+)(2)), and one-neutron transfer channel, particularly the first one. On the other hand, a very good agreement is obtained when we use a nuclear diffuseness for the (17)O nucleus larger than the one for (16)O. We verify that quasi-elastic barrier distribution is a sensitive tool for determining nuclear matter diffuseness.
Resumo:
Precise quasielastic and alpha-transfer excitation functions, at theta(lab) = 161 degrees, have been measured at energies near the Coulomb barrier for the (16)O + (63)Cu system. This is the first time reported quasielastic barrier distribution for a medium odd-A nucleus target deduced from the data. Additional elastic scattering angular distributions data available in the literature for this system were also used in the investigation of the role of several individual channels in the reaction dynamics, by comparing the data with free-parameter coupled-channels calculations. In order to do so, the nucleus-nucleus bare potential has a double-folding potential as the real component and only a very short-range imaginary potential. The quasielastic barrier distribution has been shown to be a powerful tool in this analysis at the barrier region. A high collectivity of the (63)Cu was observed, mainly due to the strong influence of its 5/2-and 7/2-states on all reaction channels investigated. A striking influence of the reorientation of the ground-state target-spin on the elastic cross sections, taken at backward angles, was also observed.
Resumo:
Quasielastic excitation functions for the (16,18)O + (60)Ni systems were measured at energies near and below the Coulomb barrier, at the backward angle theta(LAB) = 161 degrees. The corresponding quasielastic barrier distributions were derived. The data were compared with predictions from coupled channel calculations using a double-folding potential as a bare potential. For the (16)O-induced scattering, good agreement was obtained for the barrier distribution by using the projectile default nuclear matter diffuseness obtained from the Sao Paulo potential systematic, that is, 0.56 fm. However, for the (18)O-induced scattering, good agreement was obtained only when the projectile nuclear matter diffuseness was changed to 0.62 fm. Therefore, in this paper we show how near-barrier quasielastic scattering can be used as a sensitive tool to derive nuclear matter diffuseness.
Resumo:
In this work, we study the emission of tensor-type gravitational degrees of freedom from a higher-dimensional, simply rotating black hole in the bulk. The decoupled radial part of the corresponding field equation is first solved analytically in the limit of low-energy emitted particles and low-angular momentum of the black hole in order to derive the absorption probability. Both the angular and radial equations are then solved numerically, and the comparison of the analytical and numerical results shows a very good agreement in the low and intermediate energy regimes. By using our exact, numerical results we compute the energy and angular-momentum emission rates and their dependence on the spacetime parameters such as the number of additional spacelike dimensions and the angular momentum of the black hole. Particular care is given to the convergence of our results in terms of the number of modes taken into account in the calculation and the multiplicity of graviton tensor modes that correspond to the same angular-momentum numbers.
Resumo:
The structural, dielectric, and vibrational properties of pure and rare earth (RE)-doped Ba(0.77) Ca(0.23)TiO(3) (BCT23; RE = Nd, Sm, Pr, Yb) ceramics obtained via solid-state reaction were investigated. The pure and RE-doped BCT23 ceramics sintered at 1450 degrees C in air for 4 h showed a dense microstructure in all ceramics. The use of RE ions as dopants introduced lattice-parameter changes that manifested in the reduction of the volume of the unit cell. RE-doped BCT23 samples exhibit a more homogenous microstructure due to the absence of a Ti-rich phase in the grain boundaries as demonstrated by scanning electron microscopy imaging. The incorporation of REs led to perturbations of the local symmetry of TiO(6) octahedra and the creation of a new Raman mode. The results of Raman scattering measurements indicated that the Curie temperature of the ferroelectric phase transition depends on the RE ion and ion content, with the Curie temperature shifting toward lower values as the RE content increases, with the exception of Yb(3+) doping, which did not affect the ferroelectric phase transition temperature. The phase transition behavior is explained using the standard soft mode model. Electronic paramagnetic resonance measurements showed the existence of Ti vacancies in the structure of RE-doped BCT23. Defects are created via charge compensation mechanisms due to the incorporation of elements with a different valence state relative to the ions of the pure BCT23 host. It is concluded that the Ti vacancies are responsible for the activation of the Raman mode at 840 cm(-1), which is in agreement with lattice dynamics calculations. (c) 2011 American Institute of Physics. [doi:10.1063/1.3594710]
Resumo:
Several growth procedures for doping InAs/GaAs quantum dots (QDs) with manganese (Mn) have been investigated with cross-sectional scanning tunneling microscopy. It is found that expulsion of Mn out of the QDs and subsequent segregation makes it difficult to incorporate Mn in the QDs even at low growth temperatures of T=320 degrees C and high Mn fluxes. Mn atoms in and around QDs have been observed with strain and potential confinement changing the appearance of the Mn features.
Resumo:
The importance of interface effects for organic devices has long been recognized, but getting detailed knowledge of the extent of such effects remains a major challenge because of the difficulty in distinguishing from bulk effects. This paper addresses the interface effects on the emission efficiency of poly(p-phenylene vinylene) (PPV), by producing layer-by-layer (LBL) films of PPV alternated with dodecylbenzenesulfonate. Films with thickness varying from similar to 15 to 225 nm had the structural defects controlled empirically by converting the films at two temperatures, 110 and 230 degrees C, while the optical properties were characterized by using optical absorption, photoluminescence (PL), and photoluminescence excitation spectra. Blueshifts in the absorption and PL spectra for LBL films with less than 25 bilayers (<40-50 nm) pointed to a larger number of PPV segments with low conjugation degree, regardless of the conversion temperature. For these thin films, the mean free-path for diffusion of photoexcited carriers decreased, and energy transfer may have been hampered owing to the low mobility of the excited carriers. The emission efficiency was then found to depend on the concentration of structural defects, i.e., on the conversion temperature. For thick films with more than 25 bilayers, on the other hand, the PL signal did not depend on the PPV conversion temperature. We also checked that the interface effects were not caused by waveguiding properties of the excited light. Overall, the electronic states at the interface were more localized, and this applied to film thickness of up to 40-50 nm. Because this is a typical film thickness in devices, the implication from the findings here is that interface phenomena should be a primary concern for the design of any organic device. (C) 2011 American Institute of Physics. [doi:10.1063/1.3622143]
Resumo:
Elastic properties of freestanding porous silicon layers fabricated by electrochemical anodization were studied by Raman scattering. Different anodization currents provided different degrees of porosity in the nanometer scale. Raman lines corresponding to the longitudinal optical phonons of crystalline and amorphous phases were observed. The amorphous volume fraction increased and the phonon frequencies for both phases decreased with increasing porosity. A strain distribution model is proposed whose fit to the experimental results indicates that the increasing nanoscale porosity causes strain relaxation in the amorphous domains and strain buildup in the crystalline ones. The present analysis has significant implications on the estimation of the crystalline Si domain's characteristic size from Raman scattering data. (C) 2009 The Electrochemical Society. [DOI: 10.1149/1.3225832] All rights reserved.
Resumo:
In the title compound, [Ni(C(20)H(17)N(2)O(2)S)(2)], the NiII atom is coordinated by the S and O atoms of two 1,1-dibenzyl-3-[(furan-2-yl)carbonyl]thioureate ligands in a distorted square-planar geometry. The two O and two S atoms are mutually cis to each other. The Ni-S and Ni-O bond lengths lie within the range of those found in related structures. The dihedral angle between the planes of the two chelating rings is 20.33 (6)degrees.
Resumo:
The title compound, C11H10N2O3S, was synthesized from furoyl isothiocyanate and furfurylamine in dry acetone. The thiourea group is in the thioamide form. The trans-cis geometry of the thiourea group is stabilized by intramolecular hydrogen bonding between the carbonyl and cis-thioamide and results in a pseudo-S(6) planar ring which makes dihedral angles of 2.5 (3) and 88.1 (2)degrees with the furoyl and furfuryl groups, respectively. There is also an intramolecular hydrogen bond between the furan O atom and the other thioamide H atom. In the crystal structure, molecules are linked by two intermolecular N-H center dot center dot center dot O hydrogen bonds, forming dimers. These dimers are stacked within the crystal structure along the [010] direction.
Resumo:
The title compound, C10H6ClNO2, has a dihedral angle of 46.46 (5)degrees between the benzene and maleimide rings. A short intermolecular halogen-oxygen contact is observed, with a Cl center dot center dot center dot O distance of 3.0966 (13) angstrom. Both CO groups are involved in two C-H center dot center dot center dot O interactions, which gives rise to sheets parallel to (100). In addition, these sheets exhibit a pi-pi stacking interaction between the benzene and maleimide rings [mean interplanar distance of 3.337 (3) angstrom].