168 resultados para airborne thermal scanning
Resumo:
Vitamin PP includes two vitamers, niacin and niacinamide which are essential for energy production. Vitamins are sensitive and losses can occur during shelf life and heating processes. Thermal analysis can provide information about thermal behavior of each vitamer relating them with time and/or temperature exposure. The vitamers thermal behavior were studied by TG/DTG and DSC under air and nitrogen atmosphere and the results showed that niacin is more stable than the niacinamide and the decomposition happens by volatilization at 238 A degrees C while niacinamide melts at 129 A degrees C and volatilize at 254 A degrees C when there is the total mass loss in the TG/DTG curves.
Resumo:
Drinking hot mate has been associated with risk for esophageal cancer in South America. Thus. the aims of this study were to evaluate the modifying effects of mate intake on DNA damage and esophageal carcinogenesis induced by diethylnitrosamine (DEN) and thermal injury (TI) in male Wistar rats. At the initiation phase of carcinogenesis, rats were treated with DEN (8 x 80 mg/kg) and submitted to TI (water at 65 degrees C, 1 ml/rat, instilled into the esophagus). Concomitantly, the animals received mate (2.0% w/v) for 8 weeks. Samples of peripheral blood were collected 4 h after the last DEN application for DNA damage analysis. At weeks 8 and 20, samples from esophagus and liver were also collected for histological and immunohistochemical analysis. Mate significantly decreased DNA damage in leukocytes, cell proliferation rates in both esophagus and liver and the number of preneoplastic liver lesions from DEN/TI-treated animals at week 8. A significant lower incidence of esophageal papillomas and liver adenomas and tumor multiplicity was observed in the animals previously treated with mate at week 20. Thus, mate presented protective effects against DNA damage and esophageal and liver carcinogenesis induced by DEN. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Protein structure and function can be regulated by no specific interactions, such as ionic interactions in the presence of salts. Green fluorescent protein (GFP) shows remarkable structural stability and high fluorescence; its stability can be directly related to its fluorescence output, among other characteristics. GFP is stable under increasing temperatures, and its thermal denaturation is highly reproducible. The aim of this study was to evaluate the thermal stability of GFP in the presence of different salts at several concentrations and exposed to constant temperatures, in a range of 70-95 degrees C. Thermal stability was expressed in decimal reduction time. It was observed that the D-values obtained were higher in the presence of citrate and phosphate, when compared with that obtained in their absence, indicating that these salts stabilized the protein against thermal denaturation. (C) 2010 American Institute of Chemical Engineers Biotechnol. Prog., 27: 269-272, 2011
Resumo:
An exhaustive analysis of the crystallisation behaviour of palm oil was performed using low-resolution magnetic pulsed nuclear resonance, differential scanning calorimetry, polarised light microscopy and X-ray diffraction. The aim of this study was to characterise the changes induced in the crystallisation of palm oil by the addition of two different levels of tripalmitin and two different types of monoacylglycerols. The addition of monoacylglycerols led to the formation of a large number of crystallisation nuclei without changing the final solids content, accelerating the process of crystal formation, leading to the formation of smaller crystals than those found in the refined palm oil. Higher levels of tripalmitin produced crystals with larger dimensions, reducing the induction period and resulted in a higher level of solids at the end of the crystallisation period. The addition of monoacylglycerols and tripalmitin induced the formation of a polymorphic beta-form. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Green fluorescent protein (GFP) shows remarkable structural stability and high fluorescence; its stability can be directly related to its fluorescence output, among other characteristics. GFP is stable under increasing temperatures, and its thermal denaturation is highly reproducible. Some polymers, such as polyethylene glycol, are often used as modifiers of characteristics of biological macromolecules, to improve the biochemical activity and stability of proteins or drug bioavailability. The aim of this study was to evaluate the thermal stability of GFP in the presence of different PEG molar weights at several concentrations and exposed to constant temperatures, in a range of 70-95 degrees C. Thermal stability was expressed in decimal reduction time. It was observed that the D-values obtained were almost constant for temperatures of 85, 90, and 95 degrees C, despite the PEG concentration or molar weight studied. Even though PEG can stabilize proteins, only at 75 degrees C, PEG 600 and 4,000 g/mol stabilized GFP. (C) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 26: 252-256, 2010
Resumo:
A new method to prepare porous silk fibroin (SF) membranes without dialysis proposed. Silk fibers were degummed to remove sericin and the resultant fibroin was dissolved in a CaCl(2)-CH(3)CH(2)OH-H(2)O ternary solvent. Rather than undergoing dialysis, a fibroin salty solution was diluted in water and then submitted to a mechanical agitation that led to a phase separation through foam formation on the solution surface. This foam was continually collected and then compacted between plates to remove the excess of water. The membranes presented large pores with diameters of greater than 100 pm (as shown by scanning electron microscopy - SEM), porosity of 68% and water content of 91% w/w. X-ray diffraction (XRD) and infrared spectroscopy (FTIR-ATR) indicated that the membranes present SF in a beta-sheet structure even before the ethanol treatment. A typical elastic deformation profile and degradation under temperature were observed using calorimetric analysis (DSC), thermal gravimetric analysis (TGA) and mechanical tests. As indicated by the in vitro cytotoxicity tests, these membranes present potential for use as scaffolds. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 114: 617-623, 2009
Resumo:
Almost 30 years after the introduction of heart valve prostheses patients worldwide are benefiting from the implant of these devices. Among the various types of heart valves, the ones made of treated bovine pericardium have become a frequently used replacement of the heart`s native valve. Lyophilization, also known as freeze-drying, is an extremely useful technique for tissue storage for surgical applications. This article gives a brief overview on the current bovine pericardium lyophilization development, including the chemical modification to improve physical-chemical characteristics and the advanced technologies used to guarantee a high-quality product. It was shown that lyophilization process can be successfully applied as a method of bovine pericardium preservation and also as a technological tool to prepare new materials obtained by chemical modification of native tissues.
Resumo:
Methods of stabilization and formulation of proteins are important in both biopharmaceutical and biocatalysis industries. Polymers are often used as modifiers of characteristics of biological macromolecules to improve the biochemical activity and stability of proteins or drug bioavailability. Green fluorescent protein (GFP) shows remarkable structural stability and high fluorescence; its stability can be directly related to its fluorescence output, among other characteristics. GFP is stable under increasing temperatures, and its thermal denaturation is highly reproducible. Relative thermal stability was undertaken by incubation of GFP at varying temperatures and GFP fluorescence was used as a reporter for unfolding. At 80 degrees C, DEAE-dextran did not have any effect on GFP fluorescence, indicating that it does not confer stability.
Resumo:
Application of the thermal sum concept was developed to determine the optimal harvesting stage of new banana hybrids to be grown for export. It was tested on two triploid hybrid bananas, FlhorBan 916 (F916) and FlhorBan 918 (F918), created by CIRAD`s banana breeding programme, using two different approaches. The first approach was used with F916 and involved calculating the base temperature of bunches sampled at two sites at the ripening stage, and then determining the thermal sum at which the stage of maturity would be identical to that of the control Cavendish export banana. The second approach was used to assess the harvest stage of F918 and involved calculating the two thermal parameters directly, but using more plants and a longer period. Using the linear regression model, the estimated thermal parameters were a thermal sum of 680 degree-days (dd) at a base temperature of 17.0 degrees C for cv. F916, and 970 dd at 13.9 degrees C for cv. F918. This easy-to-use method provides quick and reliable calculations of the two thermal parameters required at a specific harvesting stage for a given banana variety in tropical climate conditions. Determining these two values is an essential step for gaining insight into the agronomic features of a new variety and its potential for export. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Microencapsulation of Lippia sidoides essential oil was carried out by spray drying. Blends of maltodextrin and gum arabic were used as carrier. Spray dried microparticles were characterized using conventional (thermogravimetry, evolved gas analysis) and combined (thermogravimetry-mass spectrometry analysis) thermal analysis techniques in order to evaluate the abilities of carriers with different compositions in retaining and in releasing the core vs. dynamic heating. Thermal analysis was useful to evaluate the physico-chemical interactions between the core and carriers and to determine the protective effect of the carriers on the evaporation of essential oil.
Resumo:
Polybia scutellaris constructs huge nests characterized by numerous spinal projections on the surface. We investigated the thermal characteristics of P scutellaris nests in order to determine whether their nest temperature is homeothermically maintained and whether the spines play a role in the thermoregulation of the nests. In order to examine these hypotheses, we measured the nest temperature in a active nest and in an abandoned nest. The temperature in the active nest was almost stable at 27 degrees C, whereas that of the abandoned nest varied with changes in the ambient temperature, suggesting that nest temperature was maintained by the thermogenesis of colony individuals. In order to predict the thermal properties of the spines, a numerical simulation was employed. To construct a 3D-model of a P scutellaris nest, the nest architecture was simplified into an outer envelope and the surface spines, for both of which the initial temperature was set at 27 degrees C. The physical properties of the simulated nest were regarded to be those of wood since the nest of this species is constructed from plant materials. When the model was exposed to cool air (12 degrees C), the temperature was lower in the models with more spines. On the other hand, when the nest was heated (42 degrees C), the temperature increase was smaller in models with more spines. It is suggested that the spines act as a heat radiator, not as an insulator, against the changes in ambient temperature.
Resumo:
Aspergillus terricola and Aspergillus ochraceus, isolated from Brazilian soil, were cultivated in Vogel and Adams media supplemented with 20 different carbon sources, at 30 A degrees C, under static conditions, for 120 and 144 h, respectively. High levels of cellulase-free xylanase were produced in birchwood or oat spelt xylan-media. Wheat bran was the most favorable agricultural residue for xylanase production. Maximum activity was obtained at 60 A degrees C and pH 6.5 for A. terricola, and 65 A degrees C and pH 5.0 for A. ochraceus. A. terricola xylanase was stable for 1 h at 60 A degrees C and retained 50% activity after 80 min, while A. ochraceus xylanase presented a t (50) of 10 min. The xylanases were stable in an alkali pH range. Biobleaching of 10 U/g dry cellulose pulp resulted in 14.3% delignification (A. terricola) and 36.4% (A. ochraceus). The brightness was 2.4-3.4% ISO higher than the control. Analysis in SEM showed defibrillation of the microfibrils. Arabinase traces and beta-xylosidase were detected which might act synergistically with xylanase.
Thermal Characteristics of the Mud Nests of the Social Wasp Polybia spinifex (Hymenoptera; Vespidae)
Resumo:
The thermal characteristics of mud nests of Polybia spinifex were investigated by measuring internal and surface temperatures of the nests. The nests had a layer of mud envelope and consisted of mud with fine sand particles. The envelope had a vertically long slit-like entrance hole. The mud nests had high thermal conductivities (0.51-0.67 W/(m degrees C)) comparable to brick, rather than insulation materials of wasps` nests such as paper and wood. It was revealed that the long entrance radiated more heat from the thereto-image. The rate of thermal radiation (emissivity) of the nest surface was 0.80, and the value was similar to that of sand. The internal temperatures of the nests were high from top (T(n1), temperature difference between ambient temperature (T(a)) was 10 degrees C) to bottom (T(n3), difference, 5 degrees C) at noon. On the other hand, the temperature distributions were reversed during the night. Temperature T(n1) was lower by 1 degrees C than T(a), possibly from nightly dew on the top surface, whereas, at the middle point (T(n2),) and T(n3), temperatures were higher by 1 degrees C compared to T(a). Temperature fluctuations (ranges between maximum and minimum temperature) at T(n2) and T(n3) were similar to that of T(a), whereas the values at T(n1) and T(s) were higher than that of T(a).
Resumo:
Preparation methods can profoundly affect the structural and electrochemical properties of electrocatalytic coatings. In this investigation, RuO(2)-Ta(2)O(5) thin films containing between 10 and 90 at.% Ru were prepared by the Pechini-Adams method. These coatings were electrochemically and physically characterized by cyclic voltammetry, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The composition and morphology of the oxide were investigated before and after accelerated life tests (ALT) by EDX and SEM. SEM results indicate typical mud-flat-cracking morphology for the majority of the films. High resolution SEMs reveal that pure oxide phases exhibit nanoporosity while binary compositions display a very compact structure. EDX analyses reveal considerable amounts of Ru in the coating even after total deactivation. XRD indicated a rutile-type structure for RuO(2) and orthorhombic structure for Ta(2)O(5). XPS data demonstrate that the binding energy of Ta is affected by Ru addition in the thin films, but the binding energy of Ru is not likewise influenced by Ta. The stability of the electrodes was evaluated by ALT performed at 750 mA cm(-2) in 80 degrees C 0.5 mol dm(-3) H(2)SO(4). The performance of electrodes prepared by the Pechini-Adams method is 100% better than that of electrodes prepared by standard thermal decomposition.
Resumo:
A surfactant-mediated solution route for the obtainment of nanosized rare-earth orthophosphates of different compositions (LaPO(4):Eu(3+), (Y,Gd)PO(4):Eu(3+),LaPO(4):Tm(3+), YPO(4):Tm(3+), and YbPO(4):Er(3+)) is presented, and the implications of the morphology control on the solids properties are discussed. The solids are prepared in water-in-heptane microemulsions, using cetyltrimethylammonium bromide and 1-butanol as the surfactant and cosurfactant; the alteration of the starting microemulsion composition allows the obtainment of similar to 30 nm thick nanorods with variable length. The morphology and the structure of the solids were evaluated through scanning electron microscopy and through powder X-ray diffractometry; dynamic light scattering and thermal analyses were also performed. The obtained materials were also characterized through vibrational (FTIR) and luminescence spectroscopy (emission/excitation, luminescence lifetimes, chromaticity, and quantum efficiency), where the red, blue, and upconversion emissions of the prepared phosphors were evaluated.