156 resultados para Slow Strain Rate Testing
Resumo:
Instrumented indentation has been used to investigate the mechanical properties of BETAMATE 1496 (R) Epoxy adhesive. The properties of the adhesive were analyzed by measuring its hardness and its Young`s modulus in samples extracted from six different positions of the front door of a commercial passenger vehicle in two phases of processing: after application of the adhesive in the door assembling (""pre-cured"" state) and after final cure in the painting oven (""cured"" state). Special attention was given to setting the optimal parameters (""creep"" time and unloading time step) for the instrumented indentation testing for the present application. Young`s modulus values around 1.1 +/- 0.2 GPa and hardness values around 0.15 +/- 0.05 GPa were obtained for all samples, irrespective of the variation of the indentation parameters in the testing procedure and of the relative position of the adhesive in the door frame in both states. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The effect of precipitation on the corrosion resistance of AISI 316L(N) stainless steel previously exposed to creep tests at 600 degrees C for periods of up to 10 years, has been studied. The corrosion resistance was investigated in 2 M H(2)SO(4)+0.5 M NaCl+0.01 M KSCN solution at 30 degrees C by electrochemical methods. The results showed that the susceptibility to intergranular corrosion was highly affected by aging at 600 degrees C and creep testing time. The intergranular corrosion resistance decreased by more than twenty times when the creep testing time increased from 7500 h to 85,000 h. The tendency to passivation decreased and less protective films were formed on the creep tested samples. All tested samples also showed susceptibility to pitting. Grain boundary M(23)C(6) carbides were not found after long-term exposure at 600 degrees C and the corrosion behavior of the creep tested samples was attributed to intermetallic phases (mainly sigma phase) precipitation. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Conventional procedures used to assess the integrity of corroded piping systems with axial defects generally employ simplified failure criteria based upon a plastic collapse failure mechanism incorporating the tensile properties of the pipe material. These methods establish acceptance criteria for defects based on limited experimental data for low strength structural steels which do not necessarily address specific requirements for the high grade steels currently used. For these cases, failure assessments may be overly conservative or provide significant scatter in their predictions, which lead to unnecessary repair or replacement of in-service pipelines. Motivated by these observations, this study examines the applicability of a stress-based criterion based upon plastic instability analysis to predict the failure pressure of corroded pipelines with axial defects. A central focus is to gain additional insight into effects of defect geometry and material properties on the attainment of a local limit load to support the development of stress-based burst strength criteria. The work provides an extensive body of results which lend further support to adopt failure criteria for corroded pipelines based upon ligament instability analyses. A verification study conducted on burst testing of large-diameter pipe specimens with different defect length shows the effectiveness of a stress-based criterion using local ligament instability in burst pressure predictions, even though the adopted burst criterion exhibits a potential dependence on defect geometry and possibly on material`s strain hardening capacity. Overall, the results presented here suggests that use of stress-based criteria based upon plastic instability analysis of the defect ligament is a valid engineering tool for integrity assessments of pipelines with axial corroded defects. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A combination of chemostat cultivation and a defined medium was used to demonstrate that uracil limitation leads to a drastic alteration in the physiology of auxotrophic cells of Saccharomyces cerevisiae. Under this condition, the carbon source is dissimilated mainly to ethanol and acetate, even in fully aerobic cultures grown at 0.1 h(-1), which is far below the critical dilution rate. Differently from nitrogen-, sulphur-, or phosphate-limited cultures, uracil limitation leads to residual sugar (either glucose or sucrose) concentrations below 2 mM, which characterizes a situation of double-limitation: by the carbon source and by uracil. Furthermore, the specific rates of CO(2) production and O(2) consumption are increased when compared to the corresponding prototrophic strain. We conclude that when auxotrophic strains are to be used for quantitative physiological studies, special attention must be paid to the cultivation conditions, mainly regarding medium formulation, in order to avoid limitation of growth by the auxotrophic nutrient.
Resumo:
Pipeline systems play a key role in the petroleum business. These operational systems provide connection between ports and/or oil fields and refineries (upstream), as well as between these and consumer markets (downstream). The purpose of this work is to propose a novel MINLP formulation based on a continuous time representation for the scheduling of multiproduct pipeline systems that must supply multiple consumer markets. Moreover, it also considers that the pipeline operates intermittently and that the pumping costs depend on the booster stations yield rates, which in turn may generate different flow rates. The proposed continuous time representation is compared with a previously developed discrete time representation [Rejowski, R., Jr., & Pinto, J. M. (2004). Efficient MILP formulations and valid cuts for multiproduct pipeline scheduling. Computers and Chemical Engineering, 28, 1511] in terms of solution quality and computational performance. The influence of the number of time intervals that represents the transfer operation is studied and several configurations for the booster stations are tested. Finally, the proposed formulation is applied to a larger case, in which several booster configurations with different numbers of stages are tested. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This work investigates the effects of photodegradation on the environmental stress cracking resistance of polycarbonate (PC). Injection molded samples were exposed to the ultraviolet (UV) light for various times in the laboratory prior to solvent contact. The bars were then stressed with two different loads in a tensile testing machine under the presence of ethanol. During this period, the stress relaxation was monitored and, after unloading, the ultimate properties were evaluated. Complementary tests were done by size exclusion chromatography, UV-visible spectroscopy, scanning electron microscopy, and light microscopy. The results indicated that ethanol causes significant modification in PC, with extensive surface crazing as well as reduction in mechanical properties. The previous degraded samples showed a higher level of stress relaxation and a greater loss in tensile strength in comparison with the undegraded ones. The synergist action of photodegradation and stress cracking in PC may be a consequence of the chemical changes caused by oxidation.
Resumo:
Bioethanol is a biofuel produced mainly from the fermentation of carbohydrates derived from agricultural feedstocks by the yeast Saccharomyces cerevisiae. One of the most widely adopted strains is PE-2, a heterothallic diploid naturally adapted to the sugar cane fermentation process used in Brazil. Here we report the molecular genetic analysis of a PE-2 derived diploid (JAY270), and the complete genome sequence of a haploid derivative (JAY291). The JAY270 genome is highly heterozygous (similar to 2 SNPs/kb) and has several structural polymorphisms between homologous chromosomes. These chromosomal rearrangements are confined to the peripheral regions of the chromosomes, with breakpoints within repetitive DNA sequences. Despite its complex karyotype, this diploid, when sporulated, had a high frequency of viable spores. Hybrid diploids formed by outcrossing with the laboratory strain S288c also displayed good spore viability. Thus, the rearrangements that exist near the ends of chromosomes do not impair meiosis, as they do not span regions that contain essential genes. This observation is consistent with a model in which the peripheral regions of chromosomes represent plastic domains of the genome that are free to recombine ectopically and experiment with alternative structures. We also explored features of the JAY270 and JAY291 genomes that help explain their high adaptation to industrial environments, exhibiting desirable phenotypes such as high ethanol and cell mass production and high temperature and oxidative stress tolerance. The genomic manipulation of such strains could enable the creation of a new generation of industrial organisms, ideally suited for use as delivery vehicles for future bioenergy technologies.
Resumo:
A new strain of the parasitoid Trichogramma pretiosum, was collected in Rio Verde County, State of Goias, Central Brazil, and designated as T. pretiosum RV. This strain was then found to be the most effective one among several different strains of T. pretiosum tested in a parasitoid selection assay. Therefore, its biological characteristics and thermal requirements were studied, aiming at allowing its multiplication under controlled environmental conditions in the laboratory. The parasitoid was reared on eggs of Pseudoplusia includens and Anticarsia gemmatalis at different constant temperatures within an 18-32 degrees C temperature range. The number of annual generations of the parasitoid was also estimated at those temperatures. Results have shown that T. pretiosum RV developmental time, from egg to adult, was influenced by all temperatures tested within the range, varying from 6.8 to 20.3 days and 6.0 to 17.0 days on eggs of P. includens and A. gemmatalis, respectively. The emergence of T. pretiosum RV from eggs of A. gemmatalis was higher than 94% at all temperatures tested. When this variable was evaluated on eggs of P. includens, however, the figures were higher than that within the 18-30 degrees C range (more than 98%), and were also statistically higher than the emergence observed at 32 degrees C (90.2%). The sex ratio of the parasitoids emerged from eggs of A. gemmatalis decreased from 0.55 to 0.29 at 18-32 degrees C, respectively. However, for those emerged from eggs of P. includens, the sex ratio was similar (0.73, 0.72 and 0.71) at 20, 28 and 32 degrees C, respectively. The lower temperature threshold (Tb) and thermal constant (K) were 10.65 degrees C and 151.25 degree-days when the parasitoid was reared on eggs of P. includens; and 11.64 degrees C and 127.60 degree-days when reared on eggs of A. gemmatalis. The number of generations per month increased from 1.45 to 4.23 and from 1.49 to 4.79 when the parasitoid was reared on eggs of P. includens and A. gemmatalis, respectively, following the increases in the temperature. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Xylella fastidiosa (Wells, Raju, Hung, Weisburg, Mandelco-Paul, and Brenner) is a bacteria] pathogen transmitted by several Sharpshooters in two tribes of Cicadellinae (Proconiini and Cicadellini). Here, we compared the transmission efficiency of X. fastidiosa in coffee (Coffea arabica L) and citrus [Citrus sinensis (L) Osbeck] by Cicadellini [Bucephalogonia xanthophis (Berg) and Dilobopterus costalimai Young] and Proconiini [Homalodisca ignorata Melichar and Oncometopia facialis (Signoret) I sharpshooters that Occur in both crops. At different seasons, healthy adults of each species were submitted to a 48-h acquisition access period on citrus or coffee source plants infected with X. fastidiosa isolates that cause Citrus variegated chlorosis (CVC) and Coffee leaf scorch (CLS), respectively, and then confined on healthy seedlings of the corresponding host plant for a 48-h inoculation access period. No significant effect of inoculation season was observed when comparing infection rates of citrus or coffee plants inoculated by vectors at different times of the year. In Citrus, the transmission rate by single insects was significantly higher for H. ignorata (30%) in relation to B. xanthophis (5%) and O. facialis (1.1%) but there was no difference among vector species in coffee, whose transmission rates ranged from 1.2 to 7.2%. Comparing host plants, H. ignorata was more effective in transmitting X. fastidiosa to citrus (30%) in relation to coffee (2.2%), whereas the other vectors transmitted the bacterium to both hosts with similar efficiencies. Despite these variations. vector efficiency in coffee and Citrus is lower than that reported in other hosts.
Resumo:
Due to the rapid depletion of water resources, water must be used more efficiently in agriculture to maintain current levels of yield in irrigated areas. The efficiency of irrigation systems can be increased by adjusting the amount of water applied to specific conditions of soil and crop, which may vary in a field. Taking into account spatial and temporal variability, it is evident that an equipment capable of providing different irrigation levels is necessary to meet the water requirement of the soil. This work aims to develop and evaluate a flow rate sprinkler to be used in center pivots or linear moving irrigation systems, with potential for utilization in irrigation scheduling. A prototype was developed by duplicating its calibrations, and discharge coefficient adjustment was carried out in the laboratory. To predict the flow rate, a successful model that represented the operation of the flow rate sprinkler was established. The calibration of the flow rate sprinkler prototype showed satisfactory statistical and technical results. Automation of the prototype was achieved by driving a step motor using communication from the parallel port of a microcomputer, which was controlled by a software developed for this purpose. The results were satisfactory and technically feasible.
Resumo:
Tomato high pigment (hp) mutants represent an interesting horticultural resource due to their enhanced accumulation of carotenoids, flavonoids and vitamin C. Since hp mutants are known for their exaggerated light responses, the molecules accumulated are likely to be antioxidants, recruited to deal with light and others stresses. Further phenotypes displayed by hp mutations are reduced growth and an apparent disturbance in water loss. Here, we examined the impact of the hp1 mutation and its near isogenic line cv Micro-Tom (MT) on stomatal conductance (gs), transpiration (E), CO(2) assimilation (A) and water use efficiency (WUE). Detached hp1 leaves lost water more rapidly than control leaves, but this behaviour was reversed by exogenous abscisic acid (ABA), indicating the ability of hp1 to respond to this hormone. Although attached hp1 leaves had enhanced gs, E and A compared to control leaves, genotypic differences were lost when water was withheld. Both instantaneous leaf-level WUE and long-term whole plant WUE did not differ between hp1 and MT. Our results indicate a link between exaggerated light response and water loss in hp1, which has important implications for the use of this mutant in both basic and horticultural research.
Resumo:
Literature has documented beneficial effects of seed priming on speed, synchronization and uniformity of germination. often leading to improved stand establishment. However. doubts still persist about the possible reversal effects, after drying and during storage of primed seeds that could overcome, partial or totally, the improved performance. The objectives of this research were to identify drying and storage procedures that would maintain the physiological performance achieved after seed priming, without negative effects on storability. First. hydroprimed cauliflower Seeds cv. Sharon and cv. Teresopolis Gigante, each represented by three seed lots were submitted to fast drying, slow drying, and treatments of pre-drying incubation (exposure to 35 degrees C, to a polyethylene glycol 6000 solution or a heat shock) followed by fast drying. In the second phase of this study, hydroprimed seed samples were submitted to fast drying (30-35 degrees C and 40-50% R.H.) and stored under laboratory conditions or in a chamber at 20 degrees C and 50% relative humidity for six months. Seed physiological potential was evaluated after 60-day intervals for germination (speed and percentage), Seedling emergence and saturated salt accelerated aging tests. All drying treatments efficiently preserved the favourable priming effects, except for the incubation at 35 degrees C for 96-144 hours. The beneficial priming effects followed by fast drying persisted for four months under controlled conditions (20 degrees C and 50% relative humidity).
Resumo:
Pseudomonas putida strain P9 is a novel competent endophyte from potato. P9 causes cultivar-dependent suppression of Phytophthora infestans. Colonization of the rhizoplane and endosphere of potato plants by P9 and its rifampin-resistant derivative P9R was studied. The purposes of this work were to follow the fate of P9 inside growing potato plants and to establish its effect on associated microbial communities. The effects of P9 and P9R inoculation were studied in two separate experiments. The roots of transplants of three different cultivars of potato were dipped in suspensions of P9 or P9R cells, and the plants were planted in soil. The fate of both strains was followed by examining colony growth and by performing PCR-denaturing gradient gel electrophoresis (PCR-DGGE). Colonies of both strains were recovered from rhizoplane and endosphere samples of all three cultivars at two growth stages. A conspicuous band, representing P9 and P9R, was found in all Pseudomonas PCR-DGGE fingerprints for treated plants. The numbers of P9R CFU and the P9R-specific band intensities for the different replicate samples were positively correlated, as determined by linear regression analysis. The effects of plant growth stage, genotype, and the presence of P9R on associated microbial communities were examined by multivariate and unweighted-pair group method with arithmetic mean cluster analyses of PCR-DGGE fingerprints. The presence of strain P9R had an effect on bacterial groups identified as Pseudomonas azotoformans, Pseudomonas veronii, and Pseudomonas syringae. In conclusion, strain P9 is an avid colonizer of potato plants, competing with microbial populations indigenous to the potato phytosphere. Bacterization with a biocontrol agent has an important and previously unexplored effect on plant-associated communities.
Resumo:
Frozen samples of mechanically deboned chicken meat (MDCM) with skin were irradiated with gamma radiation doses of 0.0 kGy (control) and 3 kGy at 2 different radiation dose rates: 0.32 kGy/h (3 kGy) and 4.04 kGy/h (3 kGy). Batches of irradiated and control samples were evaluated during 11 d of refrigerated (2 +/- 1 degrees C) storage for the following parameters: total psychrotrophic bacteria count, thiobarbituric acid reactive substances (TBARS), evaluation of objective color (L*, a*, and b*) and a sensory evaluation (irradiated odor, oxidized odor, pink and brown colors). No statistical difference (P > 0.05) was found amongst the TBARS values obtained for the MDCM samples irradiated with dose rates of 0.32 and 4.04 kGy/h. There was a significant increase (P < 0.05) in the psychrotrophic bacterial count as from the 7th day of refrigerated storage, for the MDCM samples irradiated at the dose rate of 4.04 kGy/h. With respect to the attribute of oxidized odor, the samples irradiated with a dose rate of 0.32 kGy/h showed a stronger intensity and were significantly different (P < 0.05) from the sample irradiated with a dose rate of 4.04 kGy/h on days 0 and 2 of refrigerated storage. Irradiation with a dose rate of 4.04 kGy/h (3 kGy) was shown to be the best condition for the processing of MDCM according to the evaluation of all the variables, under the conditions of this study. Practical Application The results obtained for the application of different dose rates of ionizing radiation to mechanically deboned chicken meat will provide the food industry with information concerning the definition of the best processing conditions to maximize the sensory and food quality.
Resumo:
P>Brazilian Santa Ines (SI) sheep are very well-adapted to the tropical conditions of Brazil and are an important source of animal protein. A high rate of twin births was reported in some SI flocks. Growth and Differentiation Factor 9 (GDF9) and Bone Morphogenetic Protein 15 (BMP15) are the first two genes expressed by the oocyte to be associated with an increased ovulation rate in sheep. All GDF9 and BMP15 variants characterized, until now, present the same phenotype: the heterozygote ewes have an increased ovulation rate and the mutated homozygotes are sterile. In this study, we have found a new allele of GDF9, named FecGE (Embrapa), which leads to a substitution of a phenylalanine with a cysteine in a conservative position of the mature peptide. Homozygote ewes presenting the FecGE allele have shown an increase in their ovulation rate (82%) and prolificacy (58%). This new phenotype can be very useful in better understanding the genetic control of follicular development; the mechanisms involved in the control of ovulation rate in mammals; and for the improvement of sheep production.