139 resultados para Paramedic Science Degree
Resumo:
Introduction: Stem cells are characterized by the ability to renew themselves through mitotic cell division and differentiating into a diverse range of specialized cell types. An important source of adult stem cells is the dental pulp. In dentistry, regenerative strategies are of importance because of hard dental tissue damage especially as result of caries lesions, trauma, or iatrogenic procedures. The regeneration of dental tissues relies on the ability of stem cells to produce extracellular (ECM) proteins encountered in the dental pulp tissue. Thus, the aim of this study was to analyze the expression and distribution of proteins encountered in dental pulp ECM (type I collagen, fibronectin, and tenascin) in stem cells. Methods: Human immature dental pulp stem cells (hIDPSCs) from deciduous (DL-1 and DL-4 cell lines) and permanent (DL-2) teeth were used. The distribution of ECM proteins was observed using the immunofluorescence technique. The gene expression profile was evaluated using reverse transcription polymerase chain reaction (RT-PCR) analysis. Results: Positive reactions for all ECM proteins were observed independently of the hIDPSCs analyzed. Type I collagen appeared less evident in DL-2 than in other hIDPSCs. Fibronectin and tenascin were less clear in DL-4. The RT-PCR reactions showed that type I collagen was lesser expressed in the DL-2 cells, whereas fibronectin and tenascin were similarly expressed in all hIDPSCs. Conclusions: The distribution and expression of ECM proteins differ among the hIDPSCs. These differences seemed to be related to the donor tooth conditions (deciduous or permanent, retained or erupted, and degree of root reabsorption). (J Endod 2010;36:826-831)
Resumo:
Introduction: The aim of the present study was to test the accuracy of small-volume cone-beam computed tomography (CBCT) scanning in the detection of horizontal root fractures and to assess the influence of a metallic post. Methods: Forty teeth were divided into four groups based on the presence of metallic posts and horizontal root fracture. The teeth were examined by small-volume CBCT scanning at 0.2-mm voxel resolution. Three observers analyzed the samples for the presence of a horizontal root fracture. Sensitivity and specificity were calculated. Results: High values for accuracy (73%-88%) were obtained in the groups without a metallic post, and statistically significant differences were found when the group with a metallic post has been observed (55%-70%). Intraobserver agreement also showed statistically significant differences in the groups with a metallic post. Conclusions: Small-volume CBCT scanning showed high accuracy in detecting horizontal root fracture without a metallic post. However, the presence of a metallic post significantly reduced the specificity and sensitivity of this examination. (J Endod 2011;37:1456-1459)
Resumo:
beta-Catenin is a bifunctional protein related to cell adhesion and gene transcription when activated by Wnt pathway. Altered expression of beta-catenin was related to loss of differentiation, more aggressive phenotype, increase of tumor invasion, and poor prognosis in a number of different cancers. Actinic cheilitis is caused by excessive exposure to ultraviolet radiation and has a high potential to suffer malignant transformation into squamous cell carcinoma (SCC) of the lip, the most frequent oral malignancy. Studies of oral cancer have shown the correlation of beta-catenin expression and oral SCC prognosis, and loss of membrane expression may be considered as a potential marker for early tumor recurrence. Thirty-five cases of actinic cheilitis and 12 cases of SCC of the lip were select and submitted to immunohistochemical staining using beta-catenin antibody. beta-Catenin was positive on the membrane for all cases. Eighty-five percent of actinic cheilitis cases showed cytoplasmatic staining, and 22% nuclear staining. Eighty-three percent of SCC was positive for beta-catenin, and none of them had nuclear staining. Cytoplasmatic and nuclear staining of beta-catenin on studied cases point to pathway alterations. Results demonstrated that beta-catenin expression is altered on epithelial dysplasia, and it is related to degree of alterations. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Squamous cell carcinoma of the oral cavity (OSCC) is a malignancy characterized by a high degree of local aggression and metastasis to cervical lymph nodes. Tetraspanins are proteins with functional roles in a wide array of cellular processes and are reported to be associated with tumor progression. The present study investigated the expression of the CD9, CD37, CD63, CD81 and CD82 tetraspanins in OSCC using immunohistochemistry (IHC) and quantitative Real Time-PCR (qRT-PCR). Tissue microarray (TMA) analysis of samples from 179 cases of OSCC and 10 normal samples oral mucosa were evaluated immunomorphologically. We analyzed CD9 and CD82 expression by qRT-PCR in 66 OSCC cases and 4 normal samples of oral mucosa. Expression of CD63, CD37 and CD81 was not detected in the samples studied. CD82 was downregulated or negative in 127 of 179 (80%) specimens; no correlation was observed between CD82 expression, clinicopathological parameters, disease-free survival and 5-year overall survival. CD9 expression was downregulated or negative in 75 of 129 (42%) OSCC samples. Loss of CD9 expression in OSCC samples correlated with the incidence of lymph node metastasis (p = 0.017). Disease-free survival and the 5-year overall survival of patients with downregulated or negative CD9 expression were significantly lower than in patients with positive CD9 expression (p = 0.010 and p = 0.071, respectively). No correlation was found between CD9 or CD82 expression and clinicopathological parameters by qRT-PCR. Our results suggest that the downregulation or lack of expression of the CD9 protein might indicate a more aggressive of OSCC. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
c-Jun, one of the components of the transcription factor activating protein-1 (AP-1), is suggested as a factor in malignant progression of oral lesions. c-Jun and other AP-1 components relationships with human papillomavirus (HPV) infection have been investigated, but not yet focusing on oral carcinogenesis. The aim of this study was to verify whether c-Jun immunohistochemical expression is related to HPV DNA detection in oral premalignant and malignant lesions. Fifty cases diagnosed as oral leukoplakias, with different degrees of epithelial dysplasia, and as oral squamous cell carcinomas (OSCC) were submitted to immunohistochemistry to detect c-Jun and to in situ hybridization with signal amplification to assess HPV DNA. It was verified that c-Jun nuclear expression increased according to the degree of dysplasia within the lesion, with the greatest expression in OSCC. The same did not happen concerning HPV infection - a discrete proportional relation was observed in indexes found in leukoplakia with no dysplasia, leukoplakia with dysplasia and OSCC, but statistically insignificant. When separating the group of leukoplakia by degrees of dysplasia, this relation of proportion was not observed. Nevertheless, the overall prevalence of HPV infection was 24% and the high-risk HPV types were the most frequently identified, which does not allow excluding HPV as a risk factor in oral carcinogenesis. When relating c-Jun expression and HPV infection, no statistically significant relationship is observed. Results suggest then that malignant progression mediated by c-Jun is independent of the presence of HPV in oral carcinogenesis. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Progress in polymer science has led to continuous reduction of polymerization shrinkage, exemplified by a new generation of ""low-shrink composites"". The common inference that shrinkage stress effects will be reduced in teeth restored with such restoratives with lower shrinkage was tested in extracted human premolars. Mesio-occluso-distal slot-shaped cavities were cut and restored with a conventional (SupremePlus) or low-shrink (RefleXions, Premise, Kalore, and LS) composite (N = 5). We digitized the coronal surfaces before and 10 min after restoration to determine cuspal deflection from the buccal and lingual volume change/area. We also determined the main properties involved (total shrinkage, post-gel shrinkage, degree of conversion, and elastic modulus), as well as microleakage, to verify adequate bonding. It was shown that, due to shrinkage stresses, buccal and lingual surfaces pulled inward after restoration (9-14 microns). Only Kalore and LS resulted in significantly lower tooth deformation (ANOVA/Student-Newman-Keuls post hoc, p = 0.05). The other two low-shrink composites, despite having the lowest and highest total shrinkage values, did not cause significant differences in cuspal deflection. Deflection seemed most related to the combination of post-gel shrinkage and elastic modulus. Therefore, even for significantly lower total shrinkage values, shrinkage stress is not necessarily reduced.
Resumo:
The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by (1)H NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/(1)H NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60-40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion/crosslinking, free volume pore size increases due to the high concentration of the more flexible monomer. In those cases, the increase in volumetric shrinkage was due to higher functional group concentration, in spite of the greater free volume. Therefore, through the application of the PALS model, this study elucidates the network formation in dimethacrylates commonly used in dental materials. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Objective. Stress development at the tooth/restoration interface is one of the most important reasons for failure of adhesive restorations. The aim of this study was to evaluate the influence of BisGMA/TEGDMA (B/T) and UDMA/TEGDMA (U/T) ratios on polymerization stress (PS) and on the variables related to its development: degree of conversion (DC), polymerization maximum rate (Rp(max)), volumetric shrinkage (VS), elastic modulus (E), stress relaxation (SR) and viscosity of experimental composites. Method. Composites were formulated containing B/T or U/T in mol% ratios of 2: 8, 3: 7, 4: 6, 5: 5, 6: 4, 7: 3 and 8: 2, and 15 wt% of fumed silica. PS was determined with a universal testing machine. VS was measured with a linometer. E and SR were obtained in three-point bending. DC and Rp(max) were determined by real time NIR spectroscopy and viscosity was measured in viscometer. Data were submitted to one-way ANOVA, Tukey test (alpha = 0.05%) and regression analyses. Results. PS, VS, E and DC decreased and viscosity and Rp(max) increased with base monomer content in both series. PS showed strong correlation with VS, DC and viscosity. PS, VS and DC were higher and viscosity was lower for UDMA-based materials. Significance. Reduced viscosity, kinetics parameters and molecular characteristics led UDMA-based composites to elevated conversion and relatively lower PS at lower TEGDMA contents, compared to B/T composites. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives. The role of inorganic content on physical properties of resin composites is well known. However, its influence on polymerization stress development has not been established. The aim of this investigation was to evaluate the influence of inorganic fraction on polymerization stress and its determinants, namely, volumetric shrinkage, elastic modulus and degree of conversion. Methods. Eight experimental composites containing 1:1 BisGMA (bisphenylglycidyl dimethacrylate): TEGDMA (triethylene glycol dimethacrylate) (in mol) and barium glass at increasing concentrations from 25 to 60 vol.% (5% increments) were tested. Stress was determined in a universal test machine using acrylic as bonding substrate. Nominal polymerization stress was obtained diving the maximum load by the cross-surface area. Shrinkage was measured using a water picnometer. Elastic modulus was obtained by three-point flexural test. Degree of conversion was determined by FT-Raman spectroscopy. Results. Polymerization stress and shrinkage showed inverse relationships with filler content (R(2) = 0.965 and R(2) = 0.966, respectively). Elastic modulus presented a direct correlation with inorganic content (R(2) = 0.984). Degree of conversion did not vary significantly. Polymerization stress showed a strong direct correlation with shrinkage (R(2) = 0.982) and inverse with elastic modulus (R(2) = 0.966). Significance. High inorganic contents were associated with low polymerization stress values, which can be explained by the reduced volumetric shrinkage presented by heavily filled composites. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives. The aim of this study was to evaluate the influence of monomer content on fracture toughness (K(Ic)) before and after ethanol solution storage, flexural properties and degree of conversion (DC) of bisphenol A glycidyl methacrylate (Bis-GMA) co-polymers. Methods. Five formulations were tested, containing Bis-GMA (B) combined with TEGDMA (T), UDMA (U) or Bis-EMA (E), as follows (in mol%): 30B:70T; 30B:35T:35U; 30B:70U; 30B:35T:35E; 30B:70E. Bimodal filler was introduced at 80 wt%. Single-edge notched beams for fracture toughness (FT, 25 mm x 5 mm x 2.5 mm, a/w = 0.5, n = 20) and 10 mm x 2 mm x 1 mm beams for flexural strength (FS) and modulus (FM) determination (10 mm x 2 mm x 1 mm, n = 10) were built and then stored in distilled water for 24 h at 37 degrees C. All FS/FM beams and half of the FT specimens were immediately submitted to three-point bending test. The remaining FT specimens were stored in a 75%ethanol/25%water (v/v) solution for 3 months prior to testing. DC was determined with FT-Raman spectroscopy in fragments of both FT and FS/FM specimens at 24 h. Data were submitted to one-way ANOVA/Tukey test (alpha = 5%). Results. The 30B:70T composite presented the highest K(Ic) value (in MPa m(1/2)) at 24 h (1.3 +/- 0.4), statistically similar to 30B:35T:35U and 30B:70U, while 30B:70E presented the lowest value (0.5 +/- 0.1). After ethanol storage, reductions in K(Ic) ranged from 33 to 72%. The 30B:70E material presented the lowest reduction in FT and 30B:70U, the highest. DC was similar among groups (69-73%), except for 30B:70U (52 +/- 4%, p < 0.001). 30B:70U and 30B:35T:35U presented the highest FS (125 +/- 21 and 122 +/- 14 MPa, respectively), statistically different from 30B:70T or 30B:70E (92 +/- 20 and 94 +/- 16 MPa, respectively). Composites containing UDMA or Bis-EMA associated with Bis-GMA presented similar FM, statistically lower than 30B:35T:35U. Significance. Composites formulated with Bis-GMA:TEGDMA:UDMA presented the best compromise between conversion and mechanical properties. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To determine the influence of rate of polymerization, degree of conversion and volumetric shrinkage on stress development by varying the amount of photoinitiators in a model composite. Methods: Volumetric shrinkage (with a mercury dilatometer), degree of conversion, maximum rate of reaction (RP(max)) (with differential scanning calorimetry) and polymerization stress (with a controlled compliance device) were evaluated. Bis-GMA/TEGDMA (equal mass ratios) were mixed with a tertiary amine (EDMAB) and camphorqpinone, respectively, in three concentrations (wt%): high= 0.8/1.6; intermediate= 0.4/0.8 and low= 0.2/0.4. 80 wt% filler was added. Composites were photoactivated (400 mW/cm(2) x 40 seconds; radiant exposure=16J/cm(2)). A fourth experimental group was included in which the low concentration formulation was exposed for 80 seconds (32 J/cm(2)). Results: For the same radiant exposure, conversion, RP(max) and stress increased with photoinitiator concentration (P< 0.001). When the low concentration group exposed to 32 J/cm(2) was compared with the high and intermediate groups (exposed to 16 J/cm(2)), RPmax Still increased with the photoinitiator concentration between all levels (P< 0.001) but conversion and stress did not vary (P> 0.05). Shrinkage did not vary regardless of the photoinitiator concentration or radiant exposure. For the photoinitiator concentrations used in this study. Polymerization stress was influenced by conversion but not by rate of reaction. (Am J Dent 2009;22:206-210).
Resumo:
Purpose: To evaluate early and 24-hour microtensile bond strength (mu TBS) and the degree of conversion (DC) of one representative adhesive system from each of the four current bonding approaches. Methods: 40 human molars were sectioned occluso-gingivally into two halves. Resin composite was bonded incrementally to flat, mid-coronal dentin, using the adhesives Adper Scotchbond MP (MP); Adper Scotchbond 2 (SB); Clearfil SE Bond (SE); and Adper Prompt L-Pop (LP) according to the respective manufacturer`s instructions (n= 10). One half was immediately sectioned into sticks and subjected to mu TBS test. As the sectioning process took approximately 1 hour, the results were designated as 1-hour bond strengths. The other half was stored in distilled water at 37 degrees C for 24 hours before being sectioned and tested. The DC of these systems was measured using Fourier Transform-Raman spectroscopy in three periods: immediately, 1 and 24 hours after polymerization. Data were analyzed with ANOVA and Tukey`s tests. Results: There were no significant differences between the 1-hour and 24-hour bond strengths (P> 0.05), or among the DC measured immediately, 1 hour and 24 hours after polymerization (P> 0.05). However, significant differences were observed among adhesives (P< 0.05). mu TBS values obtained, in MPa (1 hour/24 hour), were: SB (48.6 + 1.3/48.4 + 3.5) = SE (51.9 + 4.7/53.3 +/- 2.9) > MP (35.3 +/- 10.9/38.6 + 6.7) > LP (25.5 + 1.1/26.0 + 1.5). The DC, in percentage (immediately/1 hour/24 hour), were: SE (81/82/87) > MP (79/77/81) > SB (60/63/65) > LP (39/37/42).
Resumo:
Objective. To investigate the contributions of BisGMA:TEGDMA and filler content on polymerization stress, along with the influence of variables associated with stress development, namely, degree of conversion, reaction rate, shrinkage, elastic modulus and loss tangent for a series of experimental dental composites. Methods. Twenty formulations with BisGMA: TEGDMA ratios of 3: 7, 4: 6, 5: 5, 6: 4 and 7: 3 and barium glass filler levels of 40, 50, 60 or 70 wt% were studied. Polymerization stress was determined in a tensilometer, inserting the composite between acrylic rods fixed to clamps of a universal test machine and dividing the maximum load recorded by the rods cross-sectional area. Conversion and reaction rate were determined by infra-red spectroscopy. Shrinkage was measured by mercury dilatometer. Modulus was obtained by three-point bending. Loss tangent was determined by dynamic nanoindentation. Regression analyses were performed to estimate the effect of organic and inorganic contents on each studied variable, while a stepwise forward regression identified significant variables for polymerization stress. Results. All variables showed dependence on inorganic concentration and monomeric content. The resin matrix showed a stronger influence on polymerization stress, conversion and reaction rate, whereas filler fraction showed a stronger influence on shrinkage, modulus and loss tangent. Shrinkage and conversion were significantly related to polymerization stress. Significance. Both the inorganic filler concentration and monomeric content affect polymerization stress, but the stronger influence of the resin matrix suggests that it may be possible to reduce stress by modifying resin composition without sacrificing filler content. The main challenge is to develop formulations with low shrinkage without sacrificing degree of conversion. (C) 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective. To evaluate the effect of two additives, aldehyde or diketone, on the wear, roughness and hardness of bis-GMA-based composites/copolymers containing TEGDMA, propoxylated bis-GMA (CH(3)bis-GMA) or propoxylated fluorinated bis-GMA (CF(3)bis-GMA). Methods. Fifteen experimental composites and 15 corresponding copolymers were prepared combining bis-GMA and TEGDMA, CH3bis-GMA or CF3bis-GMA, with aldehyde (24mol% and 32 mol%) or diketone (24 mol% and 32 mol%) totaling 30 groups. For composites, hybrid treated filler (barium aluminosilicate glass/pyrogenic silica; 60 wt%) was added to monomer mixtures. Photopolymerization was affected by 0.2 wt% each of camphorquinone and N,N-dimethyl-p-toluidine. Wear (W) test was conducted in a toothbrushing abrasion machine (n = 6) and quantified using a profilometer. Surface roughness (R) changes, before and after abrasion test, were determined using a rugosimeter. Microhardness (H) measurements were performed for dry and wet samples using a Knoop microindenter (n = 6). Data were analyzed by one-way ANOVA and Tukey`s test (alpha = 0.05). Results. Incorporation of additives led to improved W and H values for bis-GMA/TEGDMA and bis-GMA/CH(3)bis-GMA systems. Additives had no significant effect on the W and H changes of bis-GMA/CF(3)bis-GMA. With regard to R changes, additives produced decreased values for bis-GMA/CH3bis-GMA and bis-GMA/CF3bis-GMA composites. Bis-GMA/TEGDMA and bis-GMA/CH(3)bis-GMA copolymers with additives became smoother after abrasion test. Significance. The findings correlate with additives ability to improve degree of conversion of some composites/copolymers thereby enhancing mechanical properties. Published by Elsevier Ltd on behalf of Academy of Dental Materials
Resumo:
Purpose: To investigate the effect of curing rate on softening in ethanol, degree of conversion, and wear of resin composites. Methods: With a given energy density and for each of two different light-curing units (QTH or LED), the curing rate was reduced by modulating the curing mode. Thus, the irradiation of resin composite specimens (Filtek Z250, Tetric Ceram, Esthet-X) was performed in a continuous curing mode and in a pulse-delay curing mode. Wallace hardness was used to determine the softening of resin composite after storage in ethanol. Degree of conversion was determined by infrared spectroscopy (FTIR). Wear was assessed by a three-body test. Data were submitted to Levene`s test, one and three-way ANOVA, and Tukey HSD test (alpha= 0.05). Results: Immersion in ethanol, curing mode, and material all had significant effects on Wallace hardness. After ethanol storage, resin composites exposed to the pulse-delay curing mode were softer than resin composites exposed to continuous cure (P< 0.0001). Tetric Ceram was the softest material followed by Esthet-X and Filtek Z250 (P< 0.001). Only the restorative material had a significant effect on degree of conversion (P< 0.001): Esthet-X had the lowest degree of conversion followed by Filtek Z250 and Tetric Ceram. Curing mode (P= 0.007) and material (P< 0.001) had significant effect on wear. Higher wear resulted from the pulse-delay curing mode when compared to continuous curing, and Filtek Z250 showed the lowest wear followed by Esthet-X and Tetric Ceram. (Am J Dent 2011;24:115-118).