159 resultados para Optical Imaging
Resumo:
Objectives: The purpose of this study was to measure the intraobserver and interobserver reliability of magnetic resonance detection of cervical spondylotic myelopathy with and without operational guidelines. Methods: Seven radiologists examined images from 10 patients with cord signal abnormalities and clinical signs of myelopathy. Radiologist examined films twice, with and without operational guidelines designed to define stenotic changes, while blinded to the clinical findings of the patients. Analyses included a Fleiss kappa assessment of intraobserver and interobserver reliability. Results: Results demonstrated high percentage of agreement and strong intraobserver reliability and variable Fleiss kappa, values for interobserver assessment. Operational guidelines did not improve the intraobserver or interobserver agreement. Conclusion: Although the percentage of agreement was high in some cases, the kappa agreement was low-most likely a result of the base rate problem of a kappa analysis. Sample bias toward severe degenerative changes resulted in highly prevalent selections and kappa adjusted values. Nonetheless, the results do suggest that substantial intraobserver kappa agreement and a wide range of interobserver kappa agreement exists among trained radiologists during detection of stenotic changes associated with cervical spondylotic myelopathy.
Resumo:
Depression is the most frequent psychiatric disorder in Parkinson`s disease (PD). Although evidence Suggests that depression in PD is related to the degenerative process that underlies the disease, further studies are necessary to better understand the neural basis of depression in this population of patients. In order to investigate neuronal alterations underlying the depression in PD, we studied thirty-six patients with idiopathic PD. Twenty of these patients had the diagnosis of major depression disorder and sixteen did not. The two groups were matched for PD motor severity according to Unified Parkinson Disease Rating Scale (UPDRS). First we conducted a functional magnetic resonance imaging (fMRI) using an event-related parametric emotional perception paradigm with test retest design. Our results showed decreased activation in the left mediodorsal (MD) thalamus and in medial prefrontall cortex in PD patients with depression compared to those without depression. Based upon these results and the increased neuron count in MD thalamus found in previous studies, we conducted a region of interest (ROI) guided voxel-based morphometry (VBM) study comparing the thalamic volume. Our results showed an increased volume in mediodorsal thalamic nuclei bilaterally. Converging morphological changes and functional emotional processing in mediodorsal thalamus highlight the importance of limbic thalamus in PD depression. In addition this data supports the link between neurodegenerative alterations and mood regulation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In spite of considerable technical advance in MRI techniques, the optical resolution of these methods are still limited. Consequently, the delineation of cytoarchitectonic fields based on probabilistic maps and brain volume changes, as well as small-scale changes seen in MRI scans need to be verified by neuronanatomical/neuropathological diagnostic tools. To attend the current interdisciplinary needs of the scientific community, brain banks have to broaden their scope in order to provide high quality tissue suitable for neuroimaging- neuropathology/anatomy correlation studies. The Brain Bank of the Brazilian Aging Brain Research Group (BBBABSG) of the University of Sao Paulo Medical School (USPMS) collaborates with researchers interested in neuroimaging-neuropathological correlation studies providing brains submitted to postmortem MRI in-situ. In this paper we describe and discuss the parameters established by the BBBABSG to select and to handle brains for fine-scale neuroimaging-neuropathological correlation studies, and to exclude inappropriate/unsuitable autopsy brains. We tried to assess the impact of the postmortem time and storage of the corpse on the quality of the MRI scans and to establish fixation protocols that are the most appropriate to these correlation studies. After investigation of a total of 36 brains, postmortem interval and low body temperature proved to be the main factors determining the quality of routine MRI protocols. Perfusion fixation of the brains after autopsy by mannitol 20% followed by formalin 20% was the best method for preserving the original brain shape and volume, and for allowing further routine and immunohistochemical staining. Taken to together, these parameters offer a methodological progress in screening and processing of human postmortem tissue in order to guarantee high quality material for unbiased correlation studies and to avoid expenditures by post-imaging analyses and histological processing of brain tissue.
Resumo:
Purpose The purpose of this report was to demonstrate the normal complex insertional anatomy of the tibialis posterior tendon (TPT) in cadavers using magnetic resonance (MR) imaging with anatomic and histologic correlation. Material and methods Ten cadaveric ankles were used according to institutional guidelines. MR T1-weighted spin echo imaging was performed to demonstrate aspects of the complex anatomic distal insertions of the TPT in cadaveric specimens. Findings on MR imaging were correlated with those derived from anatomic and histologic study. Reults Generally, the TPT revealed a low signal in all MR images, except near the level of the medial malleolus, where the TPT suddenly changed direction and ""magic angle"" artifact could be observed. In five out of ten specimens (50%), a type I accessory navicular bone was found in the TPT. In all cases with a type I accessory navicular bone, the TPT had an altered signal in this area. Axial and coronal planes on MR imaging were the best in identifying the distal insertions of the TPT. A normal division of the TPT was observed just proximal to the insertion into the navicular bone in five specimens (100%) occurring at a maximum proximal distance from its attachment to the navicular bone of approximately 1.5 to 2 cm. In the other five specimens, in which a type I accessory navicular bone was present, the TPT directly inserted into the accessory bone and a slip less than 1.5 mm in thickness could be observed attaching to the medial aspect of the navicular bone (100%). Anatomic inspection confirmed the sites of the distal insertions of the components of the TPT. Conclusion MR imaging enabled detailed analysis of the complex distal insertions of the TPT as well as a better understanding of those features of its insertion that can simulate a lesion.
Resumo:
Background-Endocardial fibrous tissue (FT) deposition is a hallmark of endomyocardial fibrosis (EMF). Echocardiography is a first-line and the standard technique for the diagnosis of this disease. Although late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) allows FT characterization, its role in the diagnosis and prognosis of EMF has not been investigated. Methods and Results-Thirty-six patients (29 women; age, 54 +/- 12 years) with EMF diagnosis after clinical evaluation and comprehensive 2-dimensional Doppler echocardiography underwent cine-CMR for assessing ventricular volumes, ejection fraction and mass, and LGE-CMR for FT characterization and quantification. Indexed FT volume (FT/body surface area) was calculated after planimetry of the 8 to 12 slices obtained in the short-axis view at end-diastole (mL/m(2)). Surgical resection of FT was performed in 16 patients. In all patients, areas of LGE were confined to the endocardium, frequently as a continuous streak from the inflow tract extending to the apex, where it was usually most prominent. There was a relation between increased FT/body surface area and worse New York Heart Association functional class and with increased probability of surgery (P<0.05). The histopathologic examination of resected FT showed typical features of EMF with extensive endocardial fibrous thickening, proliferation of small vessels, and scarce inflammatory infiltrate. In multivariate analysis, the patients with FT/body surface area >19 mL/m(2) had an increased mortality rate, with a relative risk of 10.8. Conclusions-Our study provides evidence that LGE-CMR is useful in the diagnosis and prognosis of EMF through quantification of the typical pattern of FT deposition. (Circ Cardiovasc Imaging. 2011;4:304-311.)
Resumo:
Three patients with progressive visual loss, chronic alcoholism and tabagism were submitted to a complete neuro-ophthalmic examination and to retinal nerve fiber layer (RNFL) measurements using optical coherence tomography (OCT) scanning. Two patients showed marked RNFL loss in the temporal sector of the optic disc. However, a third patient presented RNFL measurements within or above normal limits, based on the Stratus-OCT normative database. Such findings may be due to possible RNFL edema similar to the one that may occur in the acute phase of toxic optic neuropathies. Stratus-OCT was able to detect RNFL loss in the papillomacular bundle of patients with tobacco-alcohol-induced toxic optic neuropathy. However, interpretation must be careful when OCT does not show abnormality in order to prevent diagnostic confusion, since overestimation of RNFL thickness measurements is possible in such cases.
Resumo:
PURPOSE: To compare the ability of Fourier-domain (FD) optical coherence tomography (3D OCT-1000; Top, con, Tokyo, Japan) and time domain (TD) OCT (Stratus; Carl Zeiss Meditec Inc, Dublin, California, USA) to detect axonal loss in eyes with band atrophy (BA) of the optic nerve. DESIGN: Cross-sectional study. METHODS: Thirty-six eyes from 36 patients with BA and temporal visual field (VF) defect from chiasmal compression and 36 normal eyes were studied. Subjects were submitted to standard automated perimetry and macular and retinal nerve fiber layer (RNFL) measurements were taken using 3D OCT-1000 and Stratus OCT. Receiver operating characteristic (ROC) curves were calculated for each parameter. Spearman correlation coefficients were obtained to evaluate the relationship between RNFL and macular thickness parameters and severity of VF loss. Measurements from the two devices were compared. RESULTS: Regardless of OCT device, all RNFL and macular thickness parameters were significantly lower in eyes with BA compared with normal eyes, but no statistically significant difference was found with regard to the area under the ROC curve. Structure-function relationships were also similar for the two devices. In both groups, RNFL and macular thickness measurements were generally and in some cases significantly smaller with 3D OCT-1000 than with Stratus OCT. CONCLUSIONS: The introduction of FD technology did not lead to better discrimination ability for detecting BA of the optic nerve compared with TD technology when using the software currently provided by the manufacturer. 3D OCT-1000 FD OCT RNFL and macular measurements were generally smaller than TD Stratus OCT measurements. Investigators should be aware of this fact when comparing measurements obtained with these two devices. (Am J Oplathalmol 2009;147: 56-63. (c) 2009 by Elsevier Inc. All rights reserved.)
Resumo:
To compare color Doppler imaging (CDI) parameters of the superior ophthalmic vein (SOV) in patients with Graves` orbitopathy (GO) and in normal controls. Forty-three GO patients and 14 normal controls underwent CDI of the SOV. Patients had either fibrotic (lipogenic or myogenic) or congestive orbitopathy. The findings for each group were compared. Fifty-eight orbits with fibrotic orbitopathy, 28 with congestive orbitopathy, and 28 from controls, were studied. In the congestive group, SOV flow was detected in 13, undetectable in 11, and reversed in four orbits; in the fibrotic group, it was present in 41 and undetectable in 17 orbits. In normal controls, SOV flow was detected in 25 and undetectable in three orbits. The differences among the three groups were significant. There was also a significant difference between controls and the congestive GO orbits but not between the fibrotic group and the other two groups. Fibrotic myogenic orbitopathy patients displayed a significantly smaller SOV flow than patients with lipogenic orbitopathy. SOV was significantly reduced in orbits with congestive GO or with myogenic fibrotic GO, but not in orbits with fibrotic lipogenic orbitopathy. SOV congestion may be a contributing pathogenic factor in both congestive and fibrotic myogenic Graves` orbitopathy.
Resumo:
Aim To compare the ability of scanning laser polarimeter (SLP) with variable corneal compensation (GDx VCC) and optical coherence tomograph (Stratus OCT) to discriminate between eyes with band atrophy (BA) of the optic nerve and healthy eyes. Methods The study included 37 eyes with BA and temporal visual field (VF) defects from chiasmal compression, and 29 normal eyes. Subjects underwent standard automated perimetry (SAP) and retinal nerve fibre layer (RNFL) scans using GDx VCC and Stratus OCT. The severity of the VF defects was evaluated by the temporal mean defect (TMD), calculated as the average of 22 values of the temporal total deviation plot on SAP. Receiver operating characteristic (ROC) curves were calculated. Pearson`s correlation coefficients were used to evaluate the relationship between RNFL thickness parameters and the TMD. Results No significant difference was found between the ROC curves areas (AUCs) for the GDx VCC and Stratus OCT with regard to average RNFL thickness (0.98 and 0.99, respectively) and the superior (0.94; 0.95), inferior (0.96; 0.97), and nasal (0.92; 0.96) quadrants. However, the AUC in the temporal quadrant (0.77) was significantly smaller (P < 0.001) with GDx VCC than with Stratus OCT (0.98). Lower TMD values were associated with smaller RNFL thickness in most parameters from both equipments. Conclusion Adding VCC resulted in improved performance in SLP when evaluating eyes with BA, and both technologies are sensitive in detecting average, superior, inferior, and nasal quadrant RNFL loss. However, GDx VCC still poorly discriminates RNFL loss in the temporal quadrant when compared with Stratus OCT.
Resumo:
Objective: To evaluate the accuracy of preoperative magnetic resonance imaging (MRI) findings relative to surgical presence of deeply infiltrating endometriosis (DIE). Methods: This prospective study included 92 women with clinical suspicion of DIE. The MR images were compared with laparoscopy and pathology findings. Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of MRI for diagnosis of DIE were assessed. Results: DIE was confirmed at histopathology in 77 of the 92 patients (83.7%). Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of MRI to diagnose DIE at each of the specific sites evaluated were as follows: retrocervical space (89.4%, 92.3%, 96.7%, 77.4%, 90.2%); rectosigmoid (86.0%, 92.9%, 93.5%, 84.8%, 89.1%); bladder (23.1%, 100%,100%, 88.8%, 89.1%); ureters (50.0%, 100%, 95.5%, 95.7%); and vagina (72.7%, 100%, 100%, 96.4%, 96.7%). Conclusion: MRI demonstrates high accuracy in diagnosing DIE in the retrocervical region, rectosigmoid. bladder, ureters, and vagina. (C) 2009 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Lid. All rights reserved.
Resumo:
Introduction: This study evaluated the interobserver reliability of plain radiograpy versus computed tomography (CT) for the Universal and AO classification systems for distal radius fractures. Patients and methods: Five observers classified 21 sets of distal radius fractures using plain radiographs and CT independently. Kappa statistics were used to establish a relative level of agreement between observers for both readings. Results: Interobserver agreement was rated as moderate for the Universal classification and poor for the AO classification. Reducing the AO system to 9 categories and to its three main types reliability was raised to a ""moderate"" level. No difference was found for interobserver reliability between the Universal classification using plain radiographs and the Universal classification using computed tomography. Interobserver reliability of the AO classification system using plain radiographs was significantly higher than the interobserver reliability of the AO classification system using only computed tomography. Conclusion: From these data, we conclude that classification of distal radius fractures using CT scanning without plain radiographs is not beneficial.
Resumo:
Background. Some neuroimaging studies have supported the hypothesis of progressive brain changes after a first episode of psychosis. We aimed to determine whether (i) first-episode psychosis patients would exhibit more pronounced brain volumetric changes than controls over time and (ii) illness course/treatment would relate to those changes. Method. Longitudinal regional grey matter volume and ventricle : brain ratio differences between 39 patients with first-episode psychosis (including schizophrenia and schizophreniform disorder) and 52 non-psychotic controls enrolled in a population-based case-control study. Results. While there was no longitudinal difference in ventricle : brain ratios between first-episode psychosis subjects and controls, patients exhibited grey matter volume changes, indicating a reversible course in the superior temporal cortex and hippocampus compared with controls. A remitting course was related to reversal of baseline temporal grey matter deficits. Conclusions. Our findings do not support the hypothesis of brain changes indicating a progressive course in the initial phase of psychosis. Rather, some brain volume abnormalities may be reversible, possibly associated with a better illness course.
Resumo:
Recent theories of panic disorder propose an extensive involvement of limbic system structures, such as the hippocampus, in the pathophysiology of this condition. Despite this, no prior study has examined exclusively the hippocampal neurochemistry in this disorder. The current study used proton magnetic resonance spectroscopy imaging ((1)H-MRSI) to examine possible abnormalities in the hippocampus in panic disorder patients. Participants comprised 25 panic patients and 18 psychiatrically healthy controls. N-acetylaspartate (NAA, a putative marker of neuronal viability) and choline (Cho, involved in the synthesis and degradation of cell membranes) levels were quantified relative to creatine (Cr, which is thought to be relatively stable among individuals and in different metabolic condition) in both right and left hippocampi. Compared with controls, panic patients demonstrated significantly lower NAA/Cr in the left hippocampus. No other difference was detected. This result is consistent with previous neuroimaging findings of hippocampal alterations in panic and provides the first neurochemical evidence suggestive of involvement of this structure in the disorder. Moreover, lower left hippocampal NAA/Cr in panic disorder may possibly reflect neuronal loss and/or neuronal metabolic dysfunction, and could be related to a deficit in evaluating ambiguous cues. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
This study presents the results of Raman spectroscopy applied to the classification of arterial tissue based on a simplified model using basal morphological and biochemical information extracted from the Raman spectra of arteries. The Raman spectrograph uses an 830-nm diode laser, imaging spectrograph, and a CCD camera. A total of 111 Raman spectra from arterial fragments were used to develop the model, and those spectra were compared to the spectra of collagen, fat cells, smooth muscle cells, calcification, and cholesterol in a linear fit model. Non-atherosclerotic (NA), fatty and fibrous-fatty atherosclerotic plaques (A) and calcified (C) arteries exhibited different spectral signatures related to different morphological structures presented in each tissue type. Discriminant analysis based on Mahalanobis distance was employed to classify the tissue type with respect to the relative intensity of each compound. This model was subsequently tested prospectively in a set of 55 spectra. The simplified diagnostic model showed that cholesterol, collagen, and adipocytes were the tissue constituents that gave the best classification capability and that those changes were correlated to histopathology. The simplified model, using spectra obtained from a few tissue morphological and biochemical constituents, showed feasibility by using a small amount of variables, easily extracted from gross samples.
Resumo:
Deeply infiltrating endometriosis (DIE) is a common gynecologic disease that is characterized by a difficult and delayed diagnosis. Radiologic mapping of the DIE lesion sites is crucial for case management, patient counseling, and surgical planning. Transvaginal ultrasonography (US) is the initial imaging modality for investigating DIE and has been the focus of several recent studies. DIE typically manifests at imaging as hypoechogenic nodules throughout the affected sites and thickening of the intestinal wall, with some lesions showing a mixed pattern due to cystic areas. Transvaginal US performed after bowel preparation improves the ability to diagnose intestinal lesions and provides invaluable details, including which layers of the intestine are affected and the distance between the lesion and the anal border. It is vital that radiologists be familiar with the technical aspects of this modality and with the US manifestations of DIE lesions. Transvaginal US performed after bowel preparation should be the first-line imaging modality for the evaluation of women with suspected endometriosis. (C) RSNA, 2010 . radiographics.rsna.org