150 resultados para Liver Biopsy
Resumo:
Background Little progress has been made to identify the central neuroendocrine pathway involved in the energy intake control in nonalcoholic fatty liver disease (NAFLD) patients. Objective To assess the influence of orexigenic neuropeptides in the nutritional aspects of NAFLD obese adolescents submitted to a long-term interdisciplinary approach. Methods Fifty adolescents aged 15-19 years, with body mass index at least 95th percentile, consisting of 25 patients without NAFLD and 25 with NAFLD. The NAFLD diagnosis was determined by ultrasonography. Blood samples were collected to analyze glycemia, hepatic transaminases, and lipid profile. Insulin resistance was estimated by Homeostasis Model Assessment Insulin Resistance Index. Neuropeptide Y (NPY) and agouti related protein concentrations were measured by enzyme-linked immunosorbent assay. Analyses of food intake were made by 3 days recordatory inquiry. Results At baseline conditions, the patients with NAFLD had significantly higher values of body mass, body mass index, visceral fat, triglycerides, VLDL-C, and hepatic transaminases. After the long-term intervention, they presented a significant reduction in these parameters. In both the groups, it was observed a significant decrease in energy intake, macronutrients and dietetic cholesterol. Only the patients with NAFLD presented a positive correlation between the saturated fatty acids intake and the orexigenic neuropeptides NPY and agouti related protein, and carbohydrate with NPY. Indeed, it was observed a positive correlation between energy intake, lipid (%) and saturated fatty acids with visceral fat accumulation. Conclusion Our findings showed an important influence of diet composition in the orexigenic system, being essential consider that the excessive saturated fatty acids intake could be a determinant factor to increase nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 22:557-563 (C) 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Resumo:
Introduction. Orthotopic liver transplantation (OLT) is the treatment of choice of hepatocellular carcinoma (HCC) for patients with cirrhosis, mainly those with early HCC. Herein we have present the clinical characteristics and outcomes of cirrhotic patients with HCC who underwent OLT from cadaveric donors in our institution. Methods. From May 2001 to May 2009, we performed 121 OLT including 24 patients (19.8%) with cirrhosis and HCC within the Milan criteria. In 4 cases, HCC was an incidental finding in the explants. Results. The patients` average age was 55 +/- 10 years, including 82% men. Fifty percent of patients were Child class B or C. The average Model for End Stage Liver Disease for Child A, B, and C categories were 11, 15, and 18, respectively. The HCC diagnosis was made by 2 dynamic images in 16 cases; 1 dynamic image plus alphafetoprotein >400 ng/mL in 4; and 4 by histologic confirmation. Twenty patients received a locoregional treatment before OLT: 6 percutaneous ethanol injection, 9 transarterial chemoembolization, 1 transarterial embolization, and 4 a combination of these modalities. The median follow-up after OLT was 19.7 months (range, 1-51). A vascular invasion was observed in the explant of 1 patient, who developed an HCC recurrence and succumbed at 8 months after OLT. Two further patients, without vascular invasion or satellite tumor displayed tumor recurrences at 7 and 3 months after OLT, and death at 2 and 1 month after the diagnosis. The remaining 25 patients have not shown a tumor recurrence. Conclusion. In the present evaluation, OLT patients with early HCC and no vascular invasion showed satisfactory results and good disease-free survival. Strictly following the Milan criteria for liver transplantation in patients with HCC greatly reduces but does not completely avoid, the chances of tumor recurrence.
Resumo:
Methionine-choline-deficient diet represents a model for the study of the pathogenesis of steatohepatitis. Male rats were divided into three groups, the first group receiving a control diet and the other two groups receiving a methionine-choline-deficient diet for 1 month (MCD1) and for 2 months (MCD2), respectively. The livers of the animals were collected for the determination of vitamin E, thiobarbituric acid reactive substances (TBARS), GSH concentration, DNA damages, and for histopathological evaluation. The hepatic TBARS and GSH content was higher (P < 0.05) in the groups receiving the experimental diet (MCD1 and MCD2) compared to control diet, and hepatic vitamin E concentration differed (P < 0.05) between the MCD1 and MCD2 groups, with the MCD2 group presenting a lower concentration. Damage to hepatocyte DNA was greater (P < 0.05) in the MCD2 group (262.80 DNA injuries/100 hepatocytes) compared to MCD1 (136.4 DNA injuries/100 hepatocytes) and control diet (115.83 DNA injuries/100 hepatocytes). Liver histopathological evaluation showed that steatosis, present in experimental groups was micro- and macro-vesicular and concentrated around the centrolobular vein, zone 3, with preservation of the portal space. The inflammatory infiltrate was predominantly periductal and the steatosis and inflammatory infiltrate was similar in the MCD1 and MCD2 groups, although the presence of Mallory bodies was greater in the MCD2 group. The study describes the contribution of a methionine-choline-deficient diet to the progression of steatosis, lipid peroxidation and hepatic DNA damage in rats, serving as a point of reflection about the role of these nutrients in the western diet and the elevated non-alcoholic steatohepatitis rates in humans.
Resumo:
Gap junctional intercellular communication (GJIC) and connexin expression (Cx26 and Cx32) in mouse liver were studied after administration of 4-bis[2-(3,5 dichloropyridyloxy)]benzene (TCPOBOP), a phenobarbital-like enzyme inducer. Female C57BI/6 mice were administered TCPOBOP (5.8 mg/kg BW) and euthanized 0, 24, 48 and 72 hours later. Liver samples were snap frozen, or fixed in formalin, or submitted to GJIC analysis. The proliferating cell nuclear antigen (PCNA) immunohistochemistry and the Western blotting for Cx26 and Cx32 were performed. After 48 and 72 h of drug administration the liver-to-body weight ratio was increased 70% and 117% (p < 0.0001), respectively. There were temporal-dependent alterations in liver histopathology and a significant increase in cell proliferation was noted after 48h and sustained after 72h, though to a lesser extent (p < 0.0001). In addition. TCPOBOP administration induced apoptosis, which appeared to be time-dependent showing statistical significance only after 72h (p < 0.0001). Interestingly, a transient disruption by nearly 50% of GJIC capacity was detected after 48 h of drug ingestion, which recovered after 72 h (p = 0.003). These GJIC changes were due to altered levels of Cx26 and Cx32 in the livers of TCPOBOP-treated mice. We concluded that a single administration of TCPOBOP transiently disrupted the levels of GJIC due to decreased expression of connexins and increased apoptotic cell death in mouse liver. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
Background Iron accumulation was investigated qualitatively and quantitatively in the liver of 15 captive Brachyteles spp. Methods Hepatic hemosiderosis index (HHI) was determined as the area percentage of the liver parenchyma occupied by hemosiderin and ferritin deposits, through computerized histomorphometric analysis of Prussian blue-stained histologic sections. Results All studied animals presented liver hemosiderosis, and HHI ranged from 0.2% to 41.7%. There were no significant differences in HHI between muriqui species or genders, and no correlations were detected among HHI and age, time in captivity or body mass. Iron deposits were accompanied by other hepatic disorders. Conclusions This is the first study addressing the occurrence and consequences of iron overloading in the liver of muriquis. We propose that hemosiderosis may act as a contribute factor for the development of hepatic injuries. Further studies are advised to clarify the role of diet in the pathogenesis of hemosiderosis in these atelids.
Resumo:
Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine to specific nuclear receptors. Organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, have been hypothesized to target the action of thyroid hormones on the mammary gland and play a role in mediating or augmenting a galactopoietic response to bovine somatotropin (bST). Additionally, tissue responsiveness to thyroid hormones may be altered by changes in the number or affinity of nuclear receptors for thyroid hormones. In the present study, effects of bST and bovine growth hormone-releasing factor (bGRF) on thyroid hormone receptors in liver and mammary gland were studied. Lactating Holstein cows received continuous infusions of bST or bGRF for 63 d or served as uninfused controls. Nuclei were isolated from harvested mammary and liver tissues and incubated with [(125)I]-triiodothyronine. Treatments did not alter the capacity or affinity of specific binding sites for triiodothyronine in liver or mammary nuclei. Evaluation of transcript abundance for thyroid hormone receptors showed that isoforms of thyroid hormone receptor or retinoid receptor (which may influence thyroid receptor action) expressed in the mammary gland were not altered by bST or bGRF treatment. Data do not support the hypothesis that administration of bST or bGRF alters sensitivity of mammary tissue by changing expression of thyroid hormone receptors.
Resumo:
Four 1.5-year-old, male, Murrah buffalos were maintained during eight months without direct solar exposure during a study of copper toxicosis. Four days after solar exposure, all buffalos presented clinical manifestations consistent with acute photosensitization, including anorexia, apathy, loss of body weight, and generalized cutaneous lesions. Gross lesions were characterized by severe erythema, localized edema, fissures, tissue necrosis, gangrene and crust formation with h serous exudation. Liver copper concentration was evaluated, and cutaneous biopsies were taken when clinical signs were evident. The liver copper concentration before solar exposure was increased in all animals. Histopathologic examination of the skin revealed hepatogenous photosensitization characterized by parakeratotic hyperkeratosis, acantholysis, degeneration of squamous epithelial cells, epidermal necrosis with atrophy of sweat glands, and multifocal superficial and deep dermal edema. These findings suggest that asymptomatic accumulation of copper within the liver might have induced hepatic insufficiency thereby resulting in secondary photosensitization when these buffalos were exposed to sunlight. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The immunossuppression caused by HIV infection makes the affected individuals more susceptible to some diseases including infections, neoplasms, or even the association between them. Kaposi sarcoma (KS) is the most common AIDS-related neoplasm, featured as an angioproliferative disorder. Its cause seems to be related to the human herpesvirus type 8 and it is usually associated with lower CD4+ T cell count. Oral involvement is frequent, presenting red to blue-purplish plaques, maculaes, and nodules. On the other hand, paracoccidioidomycosis (PCM) is a systemic mycosis, endemic in Latin America, caused by Paracoccidioides brasiliensis. This mycosis is not commonly related to human immunodeficiency virus (HIV) infection, although PCM can be present in immunosuppression cases. Oral lesions, as granulomatous ulcers, are often identified in seropositive patients with PCM. A rare case, in which a male HIV-positive patient presented simultaneously Kaposi sarcoma and PCM in the same fragment of oral mucosa biopsy, is described. To the best of our knowledge, this concomitant association had not been previously described. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Mate (Ilex paraguariensis) is rich in polyphenolic compounds, which are thought to contribute to the health benefits of tea. Mate tea was administered orally to mice at a dose of 0.5, 1.0 or 2.0 g/kg for 60 d, and changes both in serum lipid concentration and fatty acid composition of liver and kidney were examined. The effects of mate tea on serum and tissue lipid peroxidation were assessed by the evaluation of thiobarbituric acid-reactive substances (TBARS). In tea-consuming mice, both MUFA (18: 1n-9) and PUFA (18: 2n-6 and 20: 4n-6) were increased (P<0.05) in the liver lipid (approximately 90 and 60%, respectively), whereas only MUFA (approximately 20%) were increased in the kidney lipid. The most altered PUFA class was n-6 PUFA, which increased by approximately 60-75 % (P<0.05). This difference in the fatty acid profile in the liver is reflected in the increased PUFA:SFA ratio. Consistent with these results, mice fed with mate tea had much lower TBARS in the liver. No differences (P>0.05) were found in the levels of serum cholesterol, HDL-cholesterol and TAG under the conditions of the present study. These results suggest that treatment with mate tea was able to protect unsaturated fatty acids from oxidation and may have selective protective effects within the body, especially on the liver.
Resumo:
Mu hiding resistance associated protein 2 (Mrp2) is a canalicular transporter responsible for organic anion secretion into bile. Mrp2 activity is regulated by insertion into the plasma membrane; however, the factors that control this are not understood. Calcium (Ca(2+)) signaling regulates exocytosis of vesicles in most cell types, and the type II inositol 1,4,5-triphosphate receptor (InsP(3)R2) regulates Ca(2+) release in the canalicular region of hepatocytes. However, the role of InsP(3)R2 and of Ca(2+) signals in canalicular insertion and function of Mrp2 is not known. The aim of this study was to determine the role of InsP(3)R2-mediated Ca(2+) signals in targeting Mrp2 to the canalicular membrane. Livers, isolated hepatocytes, and hepatocytes in collagen sandwich culture from wild-type (WT) and InsP(3)R2 knockout (KO) mice were used for western blots, confocal immunofluorescence, and time-lapse imaging of Ca(2+) signals and of secretion of a fluorescent organic anion. Plasma membrane insertion of green fluorescent protein (GFP)-Mrp2 expressed in HepG2 cells was monitored by total internal reflection microscopy. InsP(3)R2 was concentrated in the canalicular region of WT mice but absent in InsP(3)R2 KO livers, whereas expression and localization of InsP(3)R1 was preserved, and InsP(3)R3 was absent from both WT and KO livers. Ca(2+) signals induced by either adenosine triphosphate (ATP) or vasopressin were impaired in hepatocytes lacking InsP(3)R2. Canalicular secretion of the organic anion 5-chloromethylfluorescein diacetate (CMFDA) was reduced in KO hepatocytes, as well as in WT hepatocytes treated with 1,2-bis(o-aminophenoxy)ethane-N,N,N`,N`-tetra-acetic acid (BAPTA). Moreover, the choleretic effect of tauroursodeoxycholic acid (TUDCA) was impaired in InsP(3)R2 KO mice. Finally, ATP increased GFP-Mrp2 fluorescence in the plasma membrane of HepG2 cells, and this also was reduced by BAPTA. Conclusion: InsP(3)R2-mediated Ca(2+) signals enhance organic anion secretion into bile by targeting Mrp2 to the canalicular membrane. (HEPATOLOGY 2010;52:327-337)
Resumo:
We have shown that rats chronically treated with Arginine (Arg), although normoglycemic, exhibit hyperinsulinemia and decreased blood glucose disappearance rate after an insulin challenge. Attempting to investigate the processes underlying these alterations, male Wistar rats were treated with Arg (35 mg/d), in drinking water, for 4 wk. Rats were then acutely stimulated with insulin, and the soleus and extensorum digitalis longus muscles, white adipose tissue (WAT), and liver were excised for total and/or phosphorylated insulin receptor (IR), IR substrate 1/2, Akt, Janus kinase 2, signal transducer and activator of transcription (STAT) 1/3/5, and p85 alpha/55 alpha determination. Muscles and WAT were also used for plasma membrane (PM) and microsome evaluation of glucose transporter (GLUT) 4 content. Pituitary GH mRNA, GH, and liver IGF-I mRNA expression were estimated. It was shown that Arg treatment: 1) did not affect phosphotyrosine-IR, whereas it decreased phosphotyrosine-IR substrate 1/2 and phosphoserine-Akt content in all tissues studied, indicating that insulin signaling is impaired at post-receptor level; 2) decreased PM GLUT4 content in both muscles and WAT; 3) increased the pituitary GH mRNA, GH, and liver IGF-I mRNA expression, the levels of phosphotyrosine-STAT5 in both muscles, phosphotyrosine-Janus kinase 2 in extensorum digitalis longus, phosphotyrosine-STAT3 in liver, and WAT as well as total p85 alpha in soleus, indicating that GH signaling is enhanced in these tissues; and 4) increased p55 alpha total content in muscles, WAT, and liver. The present findings provide the molecular mechanisms by which insulin resistance and, by extension, reduced GLUT4 content in PM of muscles and WAT take place after chronic administration of Arg, and further suggest a putative role for GH in its genesis, considering its diabetogenic effect. (Endocrinology 150: 2080-2086, 2009)
Resumo:
Gluconeogenesis in livers from overnight fasted weaned rats submitted to short-term insulin-induced hypoglycaemia (IIH) was investigated. For this purpose, a condition of hyperinsulinemia/hypoglycaemia was obtained with an intraperitoneal (ip) injection of regular insulin (1.0 U kg(-1)). Control group (COG group) received ip saline. The studies were performed 30 min after insulin (IIH group) or saline (COG group) injection. The livers from IIH and COG rats were perfused with L-alanine (5 mM), L-lactate (2 mM)), L-glutamine (10 mM) or glycerol (2 mM). Hepatic glucose, L-lactate and pyruvate production from L-alanine was not affected by IIH. In agreement with this result, the hepatic ability in producing glucose from L-lactate or glycerol remained unchanged (IIH group vs. COG group). However, livers from IIH rats showed higher glucose production from L-glutamine than livers front COG rats and, in the IIH rats, the production of glucose from L-glutamine was higher than that front L-alanine. The higher glucose production in livers from the IIH group. when compared with the COG group was due to its entrance further on gluconeogenic pathway. Taken together. the results suggest that L-glutamine is better than L-alanine, as gluconeogenic substrate in livers of hypoglyceaemic weaned rats. Copyright (C) 2008 John Wiley & Sons. Ltd.
Resumo:
The activities of glycogen phosphorylase and synthase during infusions of glucagon, isoproterenol, or cyanide in isolated liver of fed rats submitted to short-term insulin-induced hypoglycemia (IIH) was investigated. A condition of hyperinsulinemia/hypoglycemia was obtained with an intraperitoneal injection of regular insulin (1.0 U kg(-1)). The control group received ip saline. The experiments were carried out 60 min after insulin (IIH group) or saline (COG group) injection. The rats were anesthetized and after laparotomy, blood was collected from the vena cava for glucose and insulin measurements. The liver was their infused with glucagon (1 nM), isoproterenot (2 mu M), or cyanide (0.5 mM) during 20 min and a sample of the organ was collected for determination of the activities of glycogen phosphorylase and synthase 5 min after starting and 10 min after stopping the infusions. The infusions of cyanide, glucagons, and isoproterenol did not change the activities of glycogen synthase and glycogen phosphorylase. However, glycogen catabolism was decreased during the infusions of glucagon and isoproterenol in IIH rats, being more intense with isoproterenol (p < 0.05), than glucagon. It was concluded that short-term IIH promoted changes in the liver responsiveness of glycogen degradation induced by glucagon and isoproterenol without a change in the activities of glycogen phosphorylase and synthase. Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
Aim: Glimepiride, a low-potency insulin secretagogue, is as efficient on glycaemic control as other sulphonylureas, suggesting an additional insulin-sensitizer role. The aim of the present study was to confirm the insulin-sensitizer role of glimepiride and to show extra-pancreatic effects of the drug. Methods: Three-month-old monosodium glutamate (MSG)-induced obese insulin-resistant rats were treated (OG) or not treated (O) with glimepiride for 4 weeks and compared with age-matched non-obese rats (C). Insulin sensitivity in whole body, glucose transporter 4 (GLUT4) protein content, glucose uptake and glycogen synthesis in oxidative skeletal muscle and phospho-glycogen synthase kinase (p-GSK3) and glycogen content in liver were analysed. Results: Insulin sensitivity, analysed by the insulin tolerance test, was 30% lower in O than in C rats (p < 0.05), and OG rats recovered this parameter (p < 0.05). In oxidative muscle, glimepiride increased the GLUT4 protein content (50%, p < 0.001) and recovered the obesity-induced reduction (similar to 20%) of the in vitro insulin-stimulated glucose uptake and incorporation into glycogen. In liver, glimepiride increased p-GSK3 (p < 0.01) and glycogen (p < 0.05) contents. Conclusion: The increased GLUT4 protein expression and glucose utilization in oxidative muscle and the increased insulin sensitivity and glycogen storage in liver evidence the insulin-sensitizer effect of glimepiride, which must be important to enable the glimepiride drug to promote an efficient glycaemic control.
Resumo:
We previously demonstrated an increased liver gluconeogenesis (LG) during insulin-induced hypoglycaemia. Thus, an expected effect of sulphonylureas induced hypoglycaemia (SIH) could be the activation of LG. However, sulphonylureas infused directly in to the liver inhibits LG. Considering these opposite effects we investigated herein LG in rats submitted to SIH. For this purpose, 24 h fasted rats that received glibenclamide (10 mg kg(-1)) were used (SIH group). Control group received oral saline. Glycaemia at 30, 60, 90, 120 and 150 min after oral administration of glibenclamide were evaluated. Since the lowest glycaemia was obtained 120 min after glibenclamide administration, this time was chosen to investigate LG in situ perfused livers. The gluconeogenesis from precursors that enters in this metabolic pathway before the mitochondrial step, i.e. L-alanine (5 mM), L-lactate (2 mM), pyruvate (5 mM) and L-glutamine were decreased (p < 0.05). However, the gluconeogenic activity using glycerol (2 mM), which enters in the gluconeogenesis after the mitochondrial step was maintained. Taken together, the results suggest that the inhibition of LG promoted by SIH overcome the activation of this metabolic pathway promoted by IIH and could be attributed, at least in part, to its effect on mitochondrial function. Copyright (C) 2011 John Wiley & Sons, Ltd.