473 resultados para ISO 12647-2
Resumo:
We present an extensive study of the oxyborate material Co(5)Ti(O(2)BO(3))(2) using x-ray, magnetic, and thermodynamic measurements. This material belongs to a family of oxyborates known as ludwigites which presents low-dimensional subunits in the form of three leg ladders in its structure. Differently from previously investigated ludwigites the present material does not show long-range magnetic order although it goes into a spin-glass state at low temperatures. The different techniques employed in this paper allow for a characterization of the structure, the nature of the low-energy excitations and the magnetic anisotropy of this system. Its unique magnetic behavior is discussed and compared with those of other magnetic ludwigites.
Resumo:
The free H(2)xspa ligands [xspa = pspa, Clpspa, tspa or fspa where p = 3-(phenyl), Clp = 3-(2-chlorophenyl), t = 3-(2-thienyl), f = 3-(2-furyl) and spa = 2-sulfanylpropenoato], their Zn(II) complexes of formula [HQ](2)[Zn(xspa)(2)] (HQ=diisopropylammonium) and the Cd(II) equivalents were prepared and characterized by elemental analysis and by IR, Raman and NMR ((1)H, (13)C) spectroscopy. X-Ray studies of the crystal structures of [HQ](2)[Zn(pspa)(2)], [HQ](2)[Zn(Clpspa)2], [HQ](2)[Zn(tspa)(2)] and [HQ](2)[Zn(fspa)(2)] show that the zinc atom is coordinated to two O atoms and two S atoms of the ligands in a distorted tetrahedral ZnO(2)S(2) environment. In the structures of [HQ](2)[Cd(pspa)(2)] and [HQ](2)[Cd(Clpspa)(2)] the cadmium atom is coordinated to three S atoms and two carboxylato O atoms of the ligands in a distorted trigonal bipyramidal environment. The interchange of ligands between Zn( II) and Cd( II) was studied by (113)Cd NMR spectroscopy. The in vitro protective effect of H(2)xspa and their Zn( II) complexes against Cd toxicity was investigated using the human hepatocarcinoma HepG2 cell line and the pig renal proximal tubule LLC-PK1 cell line. The incorporation of Zn( II) was found to be relevant in the case of H(2)pspa, with an increase observed in the cell viability of the LCC-PK1 cells with respect to the value for the free ligand.
Resumo:
Salicylaldehyde 2-chlorobenzoyl hydrazone (H(2)LASSBio-466), salicylaldehyde 4-chlorobenzoyl hydrazone (H(2)LASSBio-1064) and their complexes [Zn(LASSBio-466) H(2)O](2) (1) and [Zn(HLASSBio-1064) Cl](2) (2) were evaluated in animal models of peripheral and central nociception, and acute inflammation. All studied compounds significantly inhibited acetic acid-induced writhing response. Upon coordination the anti-nociceptive activity was favored in the complex 1. H(2)LASSBio-466 inhibited only the first phase of the formalin test, while 1 was active in the second phase, like indomethacin, indicating its ability to inhibit nociception associated with the inflammatory response. Hence coordination to zinc(II) altered the pharmacological profile of H(2)LASSBio-466. H(2)LASSBio-1064 inhibited both phases but this effect was not improved by coordination. The studied compounds did not increase the latency of response in the hot plate model, indicating their lack of central anti-nociceptive activity. All compounds showed levels of inhibition of zymosan-induced peritonitis comparable or superior to indomethacin, indicating an expressive anti-inflammatory profile.
Resumo:
In the title complex, (C(24)H(20)P)(2)[Sn(C(2)H(3)NO(2)S(3))(3)], the Sn(IV) atom is coordinated by three N-(methylsulfonyl) dithiocarbimate bidentate ligands through the anionic S atoms in a slightly distorted octahedral coordination geometry. There is one half-molecule in the asymmetric unit; the complex is located on a crystallographic twofold rotation axis passing through the cation and bisecting one of the (non-symmetric) ligands, which appears thus disordered over two sites of equal occupancy. In the crystal structure, weak intermolecular C-H center dot center dot center dot O and C-H center dot center dot center dot S interactions contribute to the packing stabilization.
Resumo:
In the crystal of the title compound, C(17)H(16)N(2), molecules are linked by C-H center dot center dot center dot N hydrogen bonds, forming rings of graph-set motifs R(2)(1) (6) and R(2)(2) (10). The title molecule is close to planar, with a dihedral angle between the aromatic rings of 0.6 (1)degrees. Torsion angles confirm a conformational trans structure.
Resumo:
We present an extensive study of the structural, magnetic, and thermodynamic properties of the two heterometallic oxyborates: Co(2)FeO(2)BO(3) and Ni(2)FeO(2)BO(3). This has been carried out through x-ray diffraction at room temperature (RT) and 150 K, dc and ac magnetic susceptibilities, and specific-heat experiments in single crystals above 2 K. The magnetic properties of these iron ludwigites are discussed in comparison with those of the other two known homometallic ludwigites: Fe(3)O(2)BO(3) and Co(3)O(2)BO(3). In both ludwigites now studied we have found that the magnetic ordering of the Fe(3+) ions occurs at temperatures very near to which they order in Fe(3)O(2)BO(3). A freezing of the divalent ions (Co and Ni) is observed at lower temperatures. Our x-ray diffraction study of both ludwigites at RT and 150 K showed very small ionic disorder in apparent contrast with the freezing of the divalent ion spins. The structural transition that occurs in homometallic Fe(3)O(2)BO(3) has not been found in the present mixed ludwigites in the temperature range investigated.
Resumo:
In the title compound, [Cu(C(20)H(17)N(2)O(2)S)(2)], the Cu(II) atom is coordinated by the S and O atoms of two 1,1-dibenzyl-3-(furan-2-ylcarbonyl)thioureate ligands in a distorted square-planar geometry. The two O and two S atoms are mutually cis to each other. The Cu-S and Cu-O bond lengths lie within the ranges of those found in related structures. The dihedral angle between the planes of the two chelating rings is 26.15 (6)degrees.
Resumo:
In this work the time resolved thermal lens method is combined with interferometric technique, the thermal relaxation calorimetry, photoluminescence and lifetime measurements to determine the thermo physical properties of Nd(2)O(3) doped sodium zincborate glass as a function of temperature up to the glass transition region. Thermal diffusivity, thermal conductivity, fluorescence quantum efficiency, linear thermal expansion coefficient and thermal coefficient of electronic polarizability were determined. In conclusion, the results showed the ability of thermal lens and interferometric methods to perform measurements very close to the phase transition region. These techniques provide absolute values for the measured physical quantities and are advantageous when low scan rates are required. (c) 2008 Optical Society of America
Resumo:
Chlorocatechol 1,2-dioxygenase from the Gram-negative bacterium Pseudomonas putida (Pp 1,2-CCD) is considered to be an important biotechnological tool owing to its ability to process a broad spectrum of organic pollutants. In the current work, the crystallization, crystallographic characterization and phasing of the recombinant Pp 1,2-CCD enzyme are described. Reddish-brown crystals were obtained in the presence of polyethylene glycol and magnesium acetate by utilizing the vapour-diffusion technique in sitting drops. Crystal dehydration was the key step in obtaining data sets, which were collected on the D03B-MX2 beamline at the CNPEM/MCT - LNLS using a MAR CCD detector. Pp 1,2-CCD crystals belonged to space group P6(1)22 and the crystallographic structure of Pp 1,2-CCD has been solved by the MR-SAD technique using Fe atoms as scattering centres and the coordinates of 3-chlorocatechol 1,2-dioxygenase from Rhodococcus opacus (PDB entry
Resumo:
The title compound, C13H12N2O2S, was synthesized from furoyl isothiocyanate and o-toluidine in dry acetone. The thiourea group is in the thioamide form. The central thiourea fragment makes dihedral angles of 2.6 (1) and 22.4 (1)degrees with the ketofuran group and the benzene ring, respectively. The molecular structure is stabilized by N-H...O hydrogen bonds. In the crystal structure, centrosymmetrically related molecules are linked by a pair of N-H...S hydrogen bonds to form a dimer with an R-2(2)(6) ring motif.
Resumo:
The title compound, C11H14N2O2S, was synthesized from furoyl isothiocyanate and piperidine in dry acetone. The thiourea group is in the thioamide form. The thiourea group makes a dihedral angle of 53.9 (1)degrees with the furan carbonyl group. In the crystal structure, molecules are linked by intermolecular N-H center dot center dot center dot O hydrogen bonds, forming one-dimensional chains along the c axis. An intramolecular N-H center dot center dot center dot O hydrogen bond is also present.
Resumo:
The asymmetric unit of the title compound, C(6)H(9)N(2)OS(2)(+)center dot-HSO(4)(-)center dot H(2)O, contains a heterocyclic cation, a hydrogen sulfate anion and a water molecule. There are strong hydrogen bonds between the hydrogen sulfate anions and water molecules, forming an infinite chain along the [010] direction, from which the cations are pendent. The steric, electronic and geometric features are compared with those of similar compounds. In this way, structural relationships are stated in terms of the influence of the sulfate group on the protonation of the heterocycle and on the tautomeric equilibrium in the solid state.
Resumo:
The title compound, C13H9N3O2S, was synthesized from furoyl isothiocyanate and 3-aminobenzonitrile in dry acetone. The thiourea group is in the thioamide form. The thiourea fragment makes dihedral angles of 3.91 (16) and 37.83 (12)degrees with the ketofuran group and the benzene ring, respectively. The molecular geometry is stabilized by N-H center dot center dot center dot O hydrogen bonds. In the crystal structure, centrosymmetrically related molecules are linked by two intermolecular N-H center dot center dot center dot S hydrogen bonds to form dimers.
Resumo:
The valence and core levels of In(2)O(3) and Sn-doped In(2)O(3) have been studied by hard x-ray photoemission spectroscopy (hv = 6000 eV) and by conventional Al K alpha (hv = 1486.6 eV) x-ray photoemission spectroscopy. The experimental spectra are compared with density-functional theory calculations. It is shown that structure deriving from electronic levels with significant In or Sn 5s character is selectively enhanced under 6000 eV excitation. This allows us to infer that conduction band states in Sn-doped samples and states at the bottom of the valence band both contain a pronounced In 5s contribution. The In 3d core line measured at hv = 1486.6 eV for both undoped and Sn-doped In(2)O(3) display an asymmetric lineshape, and may be fitted with two components associated with screened and unscreened final states. The In 3d core line spectra excited at hv = 6000 eV for the Sn-doped samples display pronounced shoulders and demand a fit with two components. The In 3d core line spectrum for the undoped sample can also be fitted with two components, although the relative intensity of the component associated with the screened final state is low, compared to excitation at 1486.6 eV. These results are consistent with a high concentration of carriers confined close to the surface of nominally undoped In(2)O(3). This conclusion is in accord with the fact that a conduction band feature observed for undoped In(2)O(3) in Al K alpha x-ray photoemission is much weaker than expected in hard x-ray photoemission.
Resumo:
We present parameter-free calculations of electronic properties of InGaN, InAlN, and AlGaN alloys. The calculations are based on a generalized quasichemical approach, to account for disorder and composition effects, and first-principles calculations within the density functional theory with the LDA-1/2 approach, to accurately determine the band gaps. We provide precise results for AlGaN, InGaN, and AlInN band gaps for the entire range of compositions, and their respective bowing parameters. (C) 2011 American Institute of Physics. [doi:10.1063/1.3576570]