170 resultados para INFLAMMATORY MEDIATORS
Resumo:
Interleukin (IL)-1 alpha and beta are important modulators of many functions of corneal epithelial and stromal cells that occur following injury to the cornea, including the influx of bone marrow-derived inflammatory cells into the stroma attracted by chemokines released from the stroma and epithelium. In this study, we examined the effect of topical soluble IL-1 receptor antagonist on bone marrow-derived cell influx following corneal epithelial scrape injury in a mouse model. C57BL/6 mice underwent corneal epithelial scrape followed by application of IL-1 receptor antagonist (Amgen, Thousand Oaks, CA) at a concentration of 20 mg/ml or vehicle for 24 h prior to immunocytochemical detection of marker CD11b-positive cells into the stroma. In two experiments, topical IL-1 receptor antagonist had a marked effect in blocking cell influx. For example, in experiment 1, topical IL-1 receptor antagonist markedly reduced detectible CD11b-positive cells into the corneal stroma at 24 It after epithelial injury compared with the vehicle control (3.5 +/- 0.5 (standard error of the mean) cells/400x field and 13.9 +/- 1.2 cells/400x field, respectively, p < 0.01). A second experiment with a different observer performing cell counting had the same result. Thus, the data demonstrate conclusively that topical IL-1 receptor antagonist markedly down-regulates CD-11b-positive monocytic cell appearance in the corneal stroma. Topical IL-1 receptor antagonist could be an effective adjuvant for clinical treatment of corneal conditions in which unwanted inflammation has a role in the pathophysiology of the disorder. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The impact of lung remodelling in respiratory mechanics has been widely studied in bleomycin-induced lung injury. However, little is known regarding the relationship between the amount of lung inflammation and pulmonary tissue mechanics. For this purpose, rats were intratracheally instilled with bleomycin (n = 29) or saline (n = 8) and sacrificed at 3, 7, or 15 days. Forced oscillatory mechanics as well as indices of remodelling (elastic fibre content and hydroxyproline) and inflammation (myeloperoxidase content, total cell count, alveolar wall thickness, and lung water content) were studied in lung tissue strips. Tissue resistance increased significantly at day 15, while hysteresivity was significantly higher in bleomycin group compared to control at all time points. Elastic fibres, hydroxyproline and myeloperoxidase, contents augmented after bleomycin at days 7 and 15. Tissue resistance and hysteresivity were significantly correlated with myeloperoxidase, elastic fibre and lung water content. In conclusion, inflammatory structural changes and elastogenesis are the main determinants for hysteretic changes in this 2-week bleomycin-induced lung injury model. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
During immune response to infectious agents, the host develops an inflammatory response which could fail to eliminate the pathogen or may become dysregulated. In this case, the ongoing response acquires a new status and turns out to be detrimental. The same elements taking part in the establishment and regulation of the inflammatory response (cytokines, chemokines, regulatory T cells and counteracting compounds like glucocorticoids) may also mediate harmful effects. Thymic disturbances seen during Trypanosoma cruzi (T. cruzi) infection fit well with this conceptual framework. After infection, this organ suffers a severe atrophy due to apoptosis-induced thymocyte exhaustion, mainly affecting the immature double-positive (DP) CD4+CD8+ population. Thymus cellularity depletion, which occurs in the absence of main immunological mediators involved in anti-T. cruzi defense, seems to be linked to a systemic cytokine/hormonal imbalance, involving a dysregulated increase in Tumor Necrosis Factor alpha (TNF-alpha) and corticosterone hormone levels. Additionally, we have found an anomalous exit of potentially autoimmune DP cells to the periphery, in parallel to a shrinkage in the compartment of natural regulatory T cells. In this context, our data clearly point to the view that the thymus is a target organ of T. cruzi infection. Preserved thymus may be essential for the development of an effective immune response against T. cruzi, but this organ is severely affected by a dysregulated circuit of proinflammatory cytokines and glucocorticoids. Also, the alterations observed in the DP population might have potential implications for the autoimmune component of human Chagas disease. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Stimulating neural electrodes are required to deliver charge to an environment that presents itself as hostile. The electrodes need to maintain their electrical characteristics (charge and impedance) in vivo for a proper functioning of neural prostheses. Here we design implantable multi-walled carbon nanotubes coating for stainless steel substrate electrodes, targeted at wide frequency stimulation of deep brain structures. In well-controlled, low-frequency stimulation acute experiments, we show that multi-walled carbon nanotube electrodes maintain their charge storage capacity (CSC) and impedance in vivo. The difference in average CSCs (n = 4) between the in vivo (1.111 mC cm(-2)) and in vitro (1.008 mC cm(-2)) model was statistically insignificant (p > 0.05 or P-value = 0.715, two tailed). We also report on the transcription levels of the pro-inflammatory cytokine IL-1 beta and TLR2 receptor as an immediate response to low-frequency stimulation using RT-PCR. We show here that the IL-1 beta is part of the inflammatory response to low-frequency stimulation, but TLR2 is not significantly increased in stimulated tissue when compared to controls. The early stages of neuroinflammation due to mechanical and electrical trauma induced by implants can be better understood by detection of pro-inflammatory molecules rather than by histological studies. Tracking of such quantitative response profits from better analysis methods over several temporal and spatial scales. Our results concerning the evaluation of such inflammatory molecules revealed that transcripts for the cytokine IL-1 beta are upregulated in response to low-frequency stimulation, whereas no modulation was observed for TLR2. This result indicates that the early response of the brain to mechanical trauma and low-frequency stimulation activates the IL-1 beta signaling cascade but not that of TLR2.
Resumo:
Chemokines comprise a structurally related family of cytokines that regulate leukocyte trafficking. Because infection with Toxoplasma gondii can induce an important inflammatory reaction that, if left uncontrolled, can lead to death, we investigated the role of the chemokine receptor CCR2 in T gondii infection. We orally infected CCR2(-/-) mice with five ME-49 T gondii cysts and monitored morbidity, survival, and immune response thereafter. The CCR2(-/-) mice displayed higher susceptibility to infection as all mice died on day 28 after infection. Despite similar Th1 responses, a more evident anti-inflammatory response was induced in the peripheral organs of CCR2(-/-) mice compared with wild-type C57BL/6 mice. Additionally, CCR2-/- mice presented greater parasitism and a milder inflammatory reaction in their peripheral organs with lesser CD4(+) and MAC-1(+) and greater CD8(+) cell migration. The parasite load decreased in these organs in CCR2(-/-) mice but remained uncontrolled in the central nervous system. Additionally, we observed down-regulated inducible nitric oxide synthase expression in peripheral organs from CCR2(-/-) mice that was associated with a small nitric oxide production by spleen macrophages. In conclusion, in the absence of CCR2, another mechanism is activated to control tissue parasitism in peripheral organs. Nevertheless, CCR2 is essential for the activation of microbicidal mediators that control T gondii replication in the central nervous system.
Resumo:
Background: Despite the extensive published data regarding the use of drains in surgery, it is still controversial. Most bariatric surgeons use drains as routinely. However, drains have sometimes have been shown to be unhelpful and even to increase the anastomotic leak rates. The purpose of the present study was to evaluate the peritoneal inflammatory response in the presence of a drain left in place until the seventh postoperative day after bariatric surgery. Methods: All patients who underwent open Roux-en-Y gastric bypass from February 2007 to August 2008 were prospectively evaluated. A 24F Blake drain was left in place for 7 days. The peritoneal effluent from the drain was collected for the determination of cytokine levels and for microbiologic analysis. Results: A total of 107 obese patients were studied. A marked increase in the levels of tumor necrosis factor-alpha and interleukin-1 beta was observed by the seventh postoperative day, even in patients without any abdominal complications. Bacterial contamination of the peritoneal effluent was also demonstrated. Conclusion: The results of our study have shown that at 7 days after surgery, a marked peritoneal inflammatory response and bacterial contamination are present. These findings could have resulted from the use of the drain for 7 postoperative days. (Surg Obes Relat Dis 2010;6:648-652.) (C) 2010 American Society for Metabolic and Bariatric Surgery. All rights reserved.
Resumo:
Background and Aim: There were strong evidences that nitric oxide has capital importance in the progressive vasodilatation associated with varied circulatory shock forms, including systemic inflammatory response syndrome (SIRS), in patients undergoing cardiac surgeries for cardiopulmonary bypass (CPB). If CPB procedures, per se, are the inciting stimulus for inflammation, plasma nitrate/nitrite (NOx) excretion would be expected to be higher in these patients rather than in patients operated without CPB. In consequence, we hypothesized that increased levels of NOx would be predictive for vasoplegic syndrome. Methods: Thirty patients were assigned to three groups: Group 1-coronary artery bypass graft (CABG) roller pump CPB; Group 2-CABG centrifugal vortex pump CPB; and Group 3-heart valve surgery roller pump CPB. Sampling of venous blood for chemiluminescence plasma NOx dosage was achieved at the following time points: (1) before anesthesia induction; (2) after anesthesia induction; (3) before heparin infusion; (4) after heparin infusion; (5) CPB-30 minutes; (6) CPB-60 minutes; (7) before protamine infusion; (8) after protamine infusion; and (9) on return to the recovery area. Results: There were no intergroup differences regarding age and anesthetic regimen, and the number of arteries grafted was not different between the CABG groups. There were no NOx statistic differences, neither among the three groups of patients or among the surgery time. In addition, there was no correlation among NOx, lactate, and hemoglobin. Conclusions: Considering the inflammatory process intrinsic to CPB, this study reinforces the idea that plasma NOx is not useful as a biomarker of inflammatory response onset, which may or may not lead to SIRS and/or vasoplegic syndrome.
Resumo:
Histoplasma capsulatum (Hc) is a facultative, intracellular parasite of worldwide significance. Infection with Hc produces a broad spectrum of diseases and may progress to a life-threatening systemic disease, particularly in individuals with HIV infection. Resolution of histoplasmosis is associated with the activation of cell-mediated immunity, and leukotriene B(4) plays an important role in this event. Lipid bodies (LBs) are increasingly being recognized as multifunctional organelles with roles in inflammation and infection. In this study, we investigated LB formation in histoplasmosis and its putative function in innate immunity. LB formation in leukocytes harvested from Hc-infected C57BL/6 mice peaks on day 2 postinfection and correlates with enhanced generation of lipid mediators, including leukotriene B(4) and PGE(2). Pretreatment of leukocytes with platelet-activating factor and BLT1 receptor antagonists showed that both lipid mediators are involved in cell signaling for LB formation. Alveolar leukocytes cultured with live or dead Hc also presented an increase in LB numbers. The yeast alkali-insoluble fraction 1, which contains mainly beta-glucan isolated from the Hc cell wall, induced a dose- and time-dependent increase in LB numbers, indicating that beta-glucan plays a signaling role in LB formation. In agreement with this hypothesis, beta-glucan-elicited LB formation was inhibited in leukocytes from 5-LO(-/-), CD18(low) and TLR2(-/-) mice, as well as in leukocytes pretreated with anti-Dectin-1 Ab. Interestingly, human monocytes from HIV-1-infected patients failed to produce LBs after beta-glucan stimulation. These results demonstrate that Hc induces LB formation, an event correlated with eicosanoid production, and suggest a role for these lipid-enriched organelles in host defense during fungal infection. The Journal of Immunology, 2009, 182: 4025-4035.
Resumo:
Aim To evaluate gastrointestinal motility during 5-fluorouracil (5-FU)-induced intestinal mucositis. Materials and methods Wistar rats received 5-FU (150 mg kg(-1), i.p.) or saline. After the 1st, 3rd, 5th, 15th and 30th day, sections of duodenum, jejunum and ileum were removed for assessment of epithelial damage, apoptotic and mitotic indexes, MPO activity and GSH concentration. In order to study gastrointestinal motility, on the 3rd or 15th day after 5-FU treatment, gastric emptying in vivo was measured by scintilographic method, and stomach or duodenal smooth muscle contractions induced by CCh were evaluated in vitro. Results On the third day of treatment, 5-FU induced a significant villi shortening, an increase in crypt depth and intestinal MPO activity and a decrease in villus/crypt ratio and GSH concentration. On the first day after 5-FU there was an increase in the apoptosis index and a decrease in the mitosis index in all intestinal segments. After the 15th day of 5-FU treatment, a complete reversion of all these parameters was observed. There was a delay in gastric emptying in vivo and a significant increase in gastric fundus and duodenum smooth muscle contraction, after both the 3rd and 15th day. Conclusions 5-FU-induced gastrointestinal dysmotility outlasts intestinal mucositis.
Resumo:
Adding a long-acting beta(2)-agonist to inhaled corticosteroids (ICS) for asthma treatment is better than increasing ICS dose in improving clinical status, although there is no consensus about the impact of this regimen on inflammation. In this double-blind, randomized, parallel group study, asthmatics with moderate to severe disease used budesonide (400 mcg/day) for 5 weeks (run-in period); then they were randomized to use budesonide (800 mcg/day - BUD group) or budesonide plus formoterol (400 mcg and 24 mcg/day, respectively - FORMO group) for 9 weeks (treatment period). Home PEF measurements, symptom daily reporting, spirometry, sputum induction (for differential cell counts and sputum cell cultures), and hypertonic saline bronchial challenge test were performed before and after treatments. TNF-alpha, IL-4 and eotaxin-2 levels in the sputum and cell culture supernatants were determined. Morning and night PEF values increased in the FORMO group during the treatment period (p < 0.01), from 435 +/- 162 to 489 +/- 169 and 428 +/- 160 to 496 +/- 173 L/min, respectively. The rate of exacerbations in the FORMO group was lower than in the BUD group (p < 0.05). Neutrophil counts in sputum increased in both groups (p < 0.05) and leukocyte viability after 48 h-culture increased in the FORMO group (p < 0.05). No other parameter changed significantly in either group. This study showed that adding formoterol to budesonide improved home PEF and provided protection from exacerbations, although increase of leukocyte viability in cell culture may be a matter of concern and needs further investigation. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Background: Periodontitis, a complication of diabetes mellitus (DM), can induce or perpetuate systemic conditions. This double-masked, placebo-controlled study evaluated the effects of periodontal therapy (scaling and root planing [SRP]) on the serum levels of glycated hemoglobin (HbA1c) and on inflammatory biomarkers. Methods: Thirty subjects with type 2 DM and periodontitis were treated with SRP + placebo (SRP; N = 15) or with SRP + doxycycline (SRP+Doxy; N = 15), 100 mg/day, for 14 days. Clinical and laboratory data were recorded at baseline and at 3 months after treatment. Results: After 3 months, the reduction in probing depth Was 0.8 mm for the SRP group (P <0.01) and 1.1 mm for the SRP+Doxy group (P <0.01) followed by a 0.9% (SRP; P = 0.17) and 1.5% (SRP+Doxy; P<0.01) reduction in HbA1c levels. A significant reduction in interleukin (IL)-6; interferon-inducible protein 10; soluble fas ligand; granulocyte colony-stimulating factor; RANTES; and IL-12 p70 serum levels were also verified (N = 30). To our knowledge, this is the first report on the effects of periodontal therapy on multiple systemic inflammatory markers in DM. Conclusions: Periodontal therapy may influence the systemic conditions of patients with type 2 DM, but no statistical difference was observed with the adjunctive systemic doxycycline therapy. Moreover, it is possible that the observed improvement in glycemic control and in the reduction of inflammatory markers could also be due to diet, which was not controlled in our study. Therefore, a confirmatory study with a larger sample size and controlled diet is necessary.
Resumo:
Neutrophil migration is responsible for tissue damage observed in inflammatory diseases and is also implicated in inflammatory nociception. The use of lectins has been demonstrated to be effective in different activities including anti-inflammatory, antimicrobial, and in cancer therapy. In this study, we addressed the potential use of a lectin from Canavalia grandiflora seeds (ConGF) to control neutrophil migration and inflammatory hypernociception. Pretreatment of the animals intravenously (15 min before) with ConGF inhibited neutrophil migration to the peritoneal cavity in a dose-dependent fashion confirmed by an inhibition of rolling and adhesion of leukocytes by intravital microscopy. Another set of experiments showed that pretreatment of the animals with ConGF inhibited the mechanical hypernociception in mice induced by the i.pl. injection of carrageenan or formalin. This anti-nociceptive effect correlated with an effective blockade of neutrophil influx, as assessed by the hind paw tissue myeloperoxidase levels. Furthermore, ConGF had important inhibitory effects on the mouse carrageenan-induced paw edema. In addition, animals treated with ConGF showed inhibition of cytokines release. In conclusion, we demonstrated that the lectin ConGF inhibits neutrophil migration and mechanical inflammatory hypernociception.
Resumo:
In the present study, the participation of the Na(v)1.8 sodium channel was investigated in the development of the peripheral pro-nociceptive state induced by daily intraplantar injections of PGE(2) in rats and its regulation in vivo by protein kinase A (PKA) and protein kinase C epsilon (PKC epsilon) as well. In the prostaglandin E(2) (PGE(2))-induced persistent hypernociception, the Na(v)1.8 mRNA in the dorsal root ganglia (DRG) was up-regulated. The local treatment with dipyrone abolished this persistent hypernociception but did not alter the Na(v)1.8 mRNA level in the DRG. Daily intrathecal administrations of antisense Na(v)1.8 decreased the Na(v)1.8 mRNA in the DRG and reduced ongoing persistent hypernociception. once the persistent hypernociception had been abolished by dipyrone, but not by Na(v)1.8 antisense treatment, a small dose of PGE(2) restored the hypernociceptive plateau. These data show that, after a period of recurring inflammatory stimuli, an intense and prolonged nociceptive response is elicited by a minimum inflammatory stimulus and that this pro-nociceptive state depends on Na(v)1.8 mRNA up-regulation in the DRG. in addition, during the persistent hypernociceptive state, the PKA and PKC epsilon expression and activity in the DRG are up-regulated and the administration of the PKA and PKC epsilon inhibitors reduce the hypernociception as well as the Na(v)1.8 mRNA level. In the present study, we demonstrated that the functional regulation of the Na(v)1.8 mRNA by PKA and PKC epsilon in the primary sensory neuron is important for the development of the peripheral pro-nociceptive state induced by repetitive inflammatory stimuli and for the maintenance of the behavioral persistent hypernociception. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Cannabidiol (CBD) is a cannabinoid component from Cannabis sativa that does not induce psychotomimetic effects and possess anti-inflammatory properties. In the present study we tested the effects of CBD in a periodontitis experimental model in rats. We also investigated possible mechanisms underlying these effects. Periodontal disease was induced by a ligature placed around the mandible first molars of each animal. Male Wistar rats were divided into 3 groups: control animals; ligature-induced animals treated with vehicle and ligature-induced animals treated with CBD (5 mg/kg, daily). Thirty days after the induction of periodontal disease the animals were sacrificed and mandibles and gingival tissues removed for further analysis. Morphometrical analysis of alveolar bone loss demonstrated that CBD-treated animals presented a decreased alveolar bone loss and a lower expression of the activator of nuclear factor-kappa B ligand RANKL/RANK. Moreover, gingival tissues from the CBD-treated group showed decreased neutrophil migration (MPO assay) associated with lower interleukin (IL)-1 beta and tumor necrosis factor (TNF)-alpha production. These results indicate that CBD may be useful to control bone resorption during progression of experimental periodontitis in rats. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
Yogi A, Callera GE, Tostes R, Touyz RM. Bradykinin regulates calpain and proinflammatory signaling through TRPM7-sensitive pathways in vascular smooth muscle cells. Am J Physiol Regul Integr Comp Physiol 296: R201-R207, 2009. First published September 17, 2008; doi: 10.1152/ajpregu.90602.2008.-Transient receptor potential melastatin-7 (TRPM7) channels have recently been identified to be regulated by vasoactive agents acting through G protein-coupled receptors in vascular smooth muscle cells (VSMC). However, downstream targets and functional responses remain unclear. We investigated the subcellular localization of TRPM7 in VSMCs and questioned the role of TRPM7 in proinflammatory signaling by bradykinin. VSMCs from Wistar-Kyoto rats were studied. Cell fractionation by sucrose gradient and differential centrifugation demonstrated that in bradykinin-stimulated cells, TRPM7 localized in fractions corresponding to caveolae. Immunofluorescence confocal microscopy revealed that TRPM7 distributes along the cell membrane, that it has a reticular-type intracellular distribution, and that it colocalizes with flotillin-2, a marker of lipid rafts. Bradykinin increased expression of calpain, a TRPM7 target, and stimulated its cytosol/membrane translocation, an effect blocked by 2-APB (TRPM7 inhibitor) and U-73122 (phospholipase C inhibitor), but not by chelerythrine (PKC inhibitor). Expression of proinflammatory mediators VCAM-1 and cyclooxygenase-2 (COX-2) was time-dependently increased by bradykinin. This effect was blocked by Hoe-140 (B(2) receptor blocker) and 2-APB. Our data demonstrate that in bradykinin-stimulated VSMCs: 1) TRPM7 is upregulated, 2) TRPM7 associates with cholesterol-rich microdomains, and 3) calpain and proinflammatory mediators VCAM-1 and COX2 are regulated, in part, via TRPM7- and phospholipase C-dependent pathways through B2 receptors. These findings identify a novel signaling pathway for bradykinin, which involves TRPM7. Such phenomena may play a role in bradykinin/B(2) receptor-mediated inflammatory responses in vascular cells.