199 resultados para Basal cell nevus syndrome
Resumo:
Background and Objective: Stevens-Johnson syndrome (SJS) is a life-threatening dermatosis characterized by epidermal sloughing and stomatitis. We report the case of a 7-year-old boy in whom laser phototherapy (LPT) was highly effective in reversing the effects of an initial episode of SJS that had apparently developed in association with treatment with phenobarbital for a seizure disorder. The patient was first seen in the intensive care unit (ICU) of our institution with fever, cutaneous lesions on his extremities, trunk, face, and neck; mucosal involvement of his genitalia and eyes (conjunctivitis); ulcerative intraoral lesions; and swollen, crusted, and bleeding lips. He reported severe pain at the sites of his intraoral and skin lesions and was unable to eat, speak, swallow, or open his mouth. Materials and Methods: Trying to prevent and minimize secondary infections, gastric problems, pain, and other complications, the patient was given clindamycin, ranitidine, dipyrone, diphenhydramine (Benadryl) drops, and morphine. In addition, he was instructed to use bicarbonate solution and Ketoconazole (Xylogel) in the oral cavity. Because of the lack of progress of the patient, the LPT was selected. Results: At 5 days after the initial session of LPT, the patient was able to eat gelatin, and on the following day, the number and severity of his intraoral lesions and his labial crusting and swelling had diminished. By 6 days after his initial session of LPT, most of the patient's intraoral lesions had disappeared, and the few that remained were painless; the patient was able to eat solid food by himself and was removed from the ICU. Ten sessions of LPT were conducted in the hospital. The patient underwent three further and consecutive sessions at the School of Dentistry, when complete healing of his oral lesions was observed. Conclusion: The outcome in this case suggests that LPT may be a new adjuvant modality for SJS complications.
Resumo:
It is well known that cancer cells secrete angiogenic factors to recruit and sustain tumor vascular networks. However, little is known about the effect of endothelial cell-secreted factors on the phenotype and behavior of tumor cells. The hypothesis underlying this study is that endothelial cells initiate signaling pathways that enhance tumor cell survival and migration. Here, we observed that soluble mediators from primary human dermal microvascular endothelial cells induce phosphorylation of signal transducer and activator of transcription 3 (STAT3), Akt, and extracellular signal-regulated kinase (ERK) in a panel of head and neck squamous cell carcinoma (HNSCC) cells (OSCC-3, UM-SCC-1, UM-SCC-17B, UM-SCC-74A). Gene expression analysis demonstrated that interleukin-6 (IL-6), interleukin-8 (CXCL8), and epidermal growth factor (EGF) are upregulated in endothelial cells cocultured with HNSCC. Blockade of endothelial cell-derived IL-6, CXCL8, or EGF by gene silencing or neutralizing antibodies inhibited phosphorylation of STAT3, Akt, and ERK in tumor cells, respectively. Notably, activation of STAT3, Akt, and ERK by endothelial cells enhanced migration and inhibited anoikis of tumor cells. We have previously demonstrated that Bcl-2 is upregulated in tumor microvessels in patients with HNSCC. Here, we observed that Bcl-2 signaling induces expression of IL-6, CXCL8, and EGF, providing a mechanism for the upregulation of these cytokines in tumor-associated endothelial cells. This study expands the contribution of endothelial cells to the pathobiology of tumor cells. It unveils a new mechanism in which endothelial cells function as initiators of molecular crosstalks that enhance survival and migration of tumor cells.
Resumo:
Background: The American Heart Association/National Heart, Lung, and Blood Institute (AHA/NHLBI), revising the National Cholesterol Evaluation Program for Adult Treatment Panel III (NCEP ATP III), and the International Diabetes Federation (IDF) have proposed definitions of metabolic syndrome that take into account waist circumference thresholds according to ethnicity. In this study we estimated the prevalence of metabolic syndrome in a Japanese-Brazilian population using NCEP definitions for Westerners (NCEPwe) and Asians (NCEPas), and IDF for Japanese (IDF). Methods: A total of 650 Japanese-Brazilians living in a developed Brazilian city and aged 30-88 years were included. Results: Metabolic syndrome prevalence according to NCEPwe, NCEPas, and IDF was, respectively, 46.5%, 56.5%, and 48.3%. Only 43.5% of subjects did not have metabolic syndrome by any of the 3 definitions, and 38.3% fulfilled metabolic syndrome criteria for all 3 definitions. Ten percent of subjects were positive for metabolic syndrome based on NCEPas and IDF, but not for NCEPwe. Because IDF requires abdominal obesity as a criterion, the frequency of subjects without metabolic syndrome according to IDF, but with metabolic syndrome by NCEPwe and NCEPas was 8.2%. Conclusions: Independent of the metabolic syndrome definition, Japanese-Brazilians present an elevated metabolic syndrome prevalence, which was higher when using NCEP criteria for Asians, followed by the IDF definition for Japanese.
Resumo:
The canine model provides a large animal system to evaluate many treatment modalities using stem cells (SCs). However, only bone marrow ( BM) protocols have been widely used in dogs for preclinical approaches. BM donation consists of an invasive procedure and the number and differentiation potential of its mesenchymal stem cells (MSCs) decline with age. More recently, umbilical cord was introduced as an alternative source to BM since it is obtained from a sample that is routinely discarded. Here, we describe the isolation of MSCs from canine umbilical cord vein (cUCV). These cells can be obtained from every cord received and grow successfully in culture. Their multipotent plasticity was demonstrated by their capacity to differentiate in adipocytic, chondrocytic, and osteocytic lineages. Furthermore, our results open possibilities to use cUCV cells in preclinical trials for many well-characterized canine model conditions homologs to human diseases.
Resumo:
The relationship between the level of cell confluence near the plateau phase of growth and blastocyst yield following somatic cell cloning is not well understood. We examined the effect of distinct cell culture confluence levels on in vitro development of cloned bovine embryos. In vitro-matured bovine oocytes were manually bisected and selected by DNA staining. One or two enucleated hemi-cytoplasts were paired and fused with an adult skin somatic cell. Cultured skin cells from an adult Nellore cow harvested at three distinct culture confluence levels (70-80, 80-90, and > 95%) were used for construction of embryos and hemi-embryos. After activation, structures were cultured in vitro as one embryo (1 x 100%) or as aggregates of two hemi-embryos (2 x 50%) per microwell. Fusion, cleavage and blastocyst rates were compared using the chi(2) test. The fusion rate for hemi-embryos (51.4%) was lower than for embryos (67.6%), with no influence of degree of cell confluence. However, blastocyst rates improved linearly (7.0, 17.5, and 29.4%) with increases in cell confluence. We conclude that degree of cell culture confluence significantly influences subsequent embryo development; use of a cell population in high confluence (> 90%) for nuclear transfer significantly improved blastocyst yield after cloning.
Resumo:
Oil and fat as energy sources at low cost are relevant in ruminant nutrition. The aim of this study was to evaluate the effects of palm fatty acid distillate (PFAD) on the degradability and ciliate protozoa population in buffalo. Four rumen fistulated buffaloes were fed a basal diet in a Latin square (4x4) design trial. Treatments were designed with four of different levels of PFAD added directly into the rumen: 0; 200; 420 and 500 g/animal/d. High levels of PFAD (420 and 500 g/d) promoted higher degradation of the soluble fraction and lower in potentially degradable fraction of dry matter (DM) and neutral detergent fibre (NDF) with lower values of potential and effective degradability in two evaluated grasses, bermudagrass and brachiariagrass. Significant decreases in the total number of protozoa/mL of rumen content, Entodinium and ciliates belonging to subfamily Diplodiniinae were observed at higher level of PFDA addition in the rumen. Also, Epidinium and Holotrich ciliates disappeared from the rumen. Significant correlations were observed of the ciliate concentration and composition as a function of dietary lipids content. Entodinium composition increased from 68.0% to 99.6% and Diplodiniinae reduced from 30.4% to 0.4% with increasing PFAD level indicating higher fat toxicity effect on the Diplodiniinae ciliates than Entodinium species and direct action of the larger ciliates on the fibre degradation.
Resumo:
Twenty-nine canine cutaneous mast cell tumors (MCTs) were morphometrically analyzed with regard to mean nuclear area (MNA) using cytopathology smears. The results showed a correlation between MNA and survival. When graded into 2 morphometrically different groups, there were statistically significant differences among high- and low-grade MCTs, regarding both Romanowsky-type stain and hematoxylin and eosin. Cytomorphometry could also separate histologic grade II tumors with better prognosis from the more aggressive MCTs. The results indicated that nuclear morphometry on cytopathology preparations can predict the biological behavior of cutaneous MCTs in dogs in an independent manner, yielding a rapid and reproducible diagnosis, which renders the method useful for veterinary oncology.
Resumo:
Strategies aimed at improving spinal cord regeneration after trauma are still challenging neurologists and neuroscientists throughout the world. Many cell-based therapies have been tested, with limited success in terms of functional outcome. In this study, we investigated the effects of human dental pulp cells (HDPCs) in a mouse model of compressive spinal cord injury (SCI). These cells present some advantages, such as the ease of the extraction process, and expression of trophic factors and embryonic markers from both ecto-mesenchymal and mesenchymal components. Young adult female C57/BL6 mice were subjected to laminectomy at T9 and compression of the spinal cord with a vascular clip for 1 min. The cells were transplanted 7 days or 28 days after the lesion, in order to compare the recovery when treatment is applied in a subacute or chronic phase. We performed quantitative analyses of white-matter preservation, trophic-factor expression and quantification, and ultrastructural and functional analysis. Our results for the HDPC-transplanted animals showed better white-matter preservation than the DMEM groups, higher levels of trophic-factor expression in the tissue, better tissue organization, and the presence of many axons being myelinated by either Schwann cells or oligodendrocytes, in addition to the presence of some healthy-appearing intact neurons with synapse contacts on their cell bodies. We also demonstrated that HDPCs were able to express some glial markers such as GFAP and S-100. The functional analysis also showed locomotor improvement in these animals. Based on these findings, we propose that HDPCs may be feasible candidates for therapeutic intervention after SCI and central nervous system disorders in humans.
Resumo:
Background: Culturing otospheres from dissociated organ of Corti is an appropriate starting point aiming at the development of cell therapy for hair cell loss. Although guinea pigs have been widely used as an excellent experimental model for studying the biology of the inner ear, the mouse cochlea has been more suitable for yielding otospheres in vitro. The aim of this study was to compare conditions and outcomes of otosphere suspension cultures from dissociated organ of Corti of either mouse or guinea pig at postnatal day three (P3), and to evaluate the guinea pig as a potential cochlea donor for preclinical cell therapy. Methods: Organs of Corti were surgically isolated from P3 guinea pig or mouse cochlea, dissociated and cultivated under non-adherent conditions. Cultures were maintained in serum-free DMEM:F12 medium, supplemented with epidermal growth factor (EGF) plus either basic fibroblast growth factor (bFGF) or transforming growth factor alpha (TGF alpha). Immunofluorescence assays were conducted for phenotype characterization. Results: The TGF alpha group presented a number of spheres significantly higher than the bFGF group. Although mouse cultures yielded more cells per sphere than guinea pig cultures, sox2 and nestin distributed similarly in otosphere cells from both organisms. We present evidence that otospheres retain properties of inner ear progenitor cells such as self-renewal, proliferation, and differentiation into hair cells or supporting cells. Conclusions: Dissociated guinea pig cochlea produced otospheres in vitro, expressing sox2 and nestin similarly to mouse otospheres. Our data is supporting evidence for the presence of inner ear progenitor cells in the postnatal guinea pig. However, there is limited viability for these cells in neonatal guinea pig cochlea when compared to the differentiation potential observed for the mouse organ of Corti at the same developmental stage.
Resumo:
Background: Lipoprotein lipase (Lpl) acts on triglyceride-rich lipoproteins in the peripheral circulation, liberating free fatty acids for energy metabolism or storage. This essential enzyme is synthesized in parenchymal cells of adipose tissue, heart, and skeletal muscle and migrates to the luminal side of the vascular endothelium where it acts upon circulating lipoproteins. Prior studies suggested that Lpl is immobilized by way of heparan sulfate proteoglycans on the endothelium, but genetically altering endothelial cell heparan sulfate had no effect on Lpl localization or lipolysis. The objective of this study was to determine if extracellular matrix proteoglycans affect Lpl distribution and triglyceride metabolism. Methods and Findings: We examined mutant mice defective in collagen XVIII (Col18), a heparan sulfate proteoglycan present in vascular basement membranes. Loss of Col18 reduces plasma levels of Lpl enzyme and activity, which results in mild fasting hypertriglyceridemia and diet-induced hyperchylomicronemia. Humans with Knobloch Syndrome caused by a null mutation in the vascular form of Col18 also present lower than normal plasma Lpl mass and activity and exhibit fasting hypertriglyceridemia. Conclusions: This is the first report demonstrating that Lpl presentation on the lumenal side of the endothelium depends on a basement membrane proteoglycan and demonstrates a previously unrecognized phenotype in patients lacking Col18.
Resumo:
Deficient wound healing in diabetic patients is very frequent, but the cellular and molecular causes are poorly defined. In this study, we evaluate the hypothesis that high glucose concentrations inhibit cell migration. Using CHO.K1 cells, NIH-3T3 fibroblasts, mouse embryonic fibroblasts and primary skin fibroblasts from control and diabetic rats cultured in 5 mM D-glucose (low glucose, LG), 25 mM D-glucose (high glucose, HG) or 25 mM L-glucose medium (osmotic control - OC), we analyzed the migration speed, protrusion stability, cell polarity, adhesion maturation and the activity of the small Rho GTPase Rac1. We also analyzed the effects of reactive oxygen species by incubating cells with the antioxidant N-Acetyl-Cysteine (NAC). We observed that HG conditions inhibited cell migration when compared to LG or OC. This inhibition resulted from impaired cell polarity, protrusion destabilization and inhibition of adhesion maturation. Conversely, Rac1 activity, which promotes protrusion and blocks adhesion maturation, was increased in HG conditions, thus providing a mechanistic basis for the HG phenotype. Most of the HG effects were partially or completely rescued by treatment with NAC. These findings demonstrate that HG impairs cell migration due to an increase in oxidative stress that causes polarity loss, deficient adhesion and protrusion. These alterations arise, in large part, from increased Rac1 activity and may contribute to the poor wound healing observed in diabetic patients.
Resumo:
Background: Gap junction intercellular communication (GJIC) is considered to play a role in the regulation of homeostasis because it regulates important processes, such as cell proliferation and cell differentiation. A reduced or lost GJIC capacity has been observed in solid tumors and studies have demonstrated that GJIC restoration in tumor cells contribute to reversion of the transformed phenotype. This observation supports the idea that restoration of the functional channel is essential in this process. However, in the last years, reports have proposed that just the increase in the expression of specific connexins can contribute to reversion of the malign phenotype in some tumor cells. In the present work, we studied the effects of exogenous Connexin 43 (Cx43) expression on the proliferative behavior and phenotype of rat hepatocarcinoma cells. Results: The exogenous Cx43 did not increase GJIC capacity of transfected cells, but it was critical to decrease the cell proliferation rate as well as reorganization of the actin filaments and cell flattening. We also observed more adhesion capacity to substrate after Cx43 transfection. Conclusion: Cx43 expression leads to a decrease of the growth of the rat hepatocellular carcinoma cells and it contributes to the reversion of the transformed phenotype. These effects were independent of the GJIC and were probably associated with the phosphorylation pattern changes and redistribution of the Cx43 protein.
Resumo:
Background: Chrysotile is considered less harmful to human health than other types of asbestos fibers. Its clearance from the lung is faster and, in comparison to amphibole forms of asbestos, chrysotile asbestos fail to accumulate in the lung tissue due to a mechanism involving fibers fragmentation in short pieces. Short exposure to chrysotile has not been associated with any histopathological alteration of lung tissue. Methods: The present work focuses on the association of small chrysotile fibers with interphasic and mitotic human lung cancer cells in culture, using for analyses confocal laser scanning microscopy and 3D reconstructions. The main goal was to perform the analysis of abnormalities in mitosis of fibers-containing cells as well as to quantify nuclear DNA content of treated cells during their recovery in fiber-free culture medium. Results: HK2 cells treated with chrysotile for 48 h and recovered in additional periods of 24, 48 and 72 h in normal medium showed increased frequency of multinucleated and apoptotic cells. DNA ploidy of the cells submitted to the same chrysotile treatment schedules showed enhanced aneuploidy values. The results were consistent with the high frequency of multipolar spindles observed and with the presence of fibers in the intercellular bridge during cytokinesis. Conclusion: The present data show that 48 h chrysotile exposure can cause centrosome amplification, apoptosis and aneuploid cell formation even when long periods of recovery were provided. Internalized fibers seem to interact with the chromatin during mitosis, and they could also interfere in cytokinesis, leading to cytokinesis failure which forms aneuploid or multinucleated cells with centrosome amplification.
Resumo:
Placentation starts with the formation of a spheroidal trophoblastic shell surrounding the embryo, thus facilitating both implantation into the uterine stroma and contact with maternal blood. Although it is known that diabetes increases the placental size and weight, the mechanisms responsible for this alteration are still poorly understood. In mammals, cellular proliferation occurs in parallel to placental development and it is possible that diabetes induces abnormal uncontrolled cell proliferation in the placenta similar to that seen in other organs (e.g. retina). To test this hypothesis, the objective of this work was to determine cell proliferation in different regions of the placenta during its development in a diabetic rat model. Accordingly, diabetes was induced on day 2 of pregnancy in Wistar rats by a single injection of alloxan (40 mg/kg i.v.). Placentas were collected on days 14, 17, and 20 postcoitum. Immunoperoxidase was used to identify Ki67 nuclear antigen in placental sections. The number of proliferating cells was determined in the total placental area as well as in the labyrinth, spongiotrophoblast and giant trophoblast cell regions. During the course of pregnancy, the number of Ki67 positive cells decreased in both control and diabetic rat placentas. However, starting from day 17 of pregnancy, the number of Ki67 positive cells in the labyrinth and spongiotrophoblast regions was higher in diabetic rat placentas as compared to control. The present results demonstrate that placentas from the diabetic rat model have a significantly higher number of proliferating cells in specific regions of the placenta and at defined developmental stages. It is possible that this increased cell proliferation promotes thickness of the placental barrier consequently affecting the normal maternal-fetal exchanges.
Resumo:
Background: We have previously demonstrated that four members of the family of small leucine-rich-proteoglycans (SLRPs) of the extracellular matrix (ECM), named decorin, biglycan, lumican and fibromodulin, are deeply remodeled in mouse uterine tissues along the estrous cycle and early pregnancy. It is known that the combined action of estrogen (E2) and progesterone (P4) orchestrates the estrous cycle and prepares the endometrium for pregnancy, modulating synthesis, deposition and degradation of various molecules. Indeed, we showed that versican, another proteoglycan of the ECM, is under hormonal control in the uterine tissues. Methods: E2 and/or medroxiprogesterone acetate (MPA) were used to demonstrate, by real time PCR and immunoperoxidase staining, respectively, their effects on mRNA expression and protein deposition of these SLRPs, in the uterine tissues. Results: Decorin and lumican were constitutively expressed and deposited in the ECM in the absence of the ovarian hormones, whereas deposition of biglycan and fibromodulin were abolished from the uterine ECM in the non-treated group. Interestingly, ovariectomy promoted an increase in decorin, lumican and fibromodulin mRNA levels, while biglycan mRNA conspicuously decreased. Hormone replacement with E2 and/or MPA differentially modulates their expression and deposition. Conclusions: The patterns of expression of these SLRPs in the uterine tissues were found to be hormone-dependent and uterine compartment-related. These results reinforce the existence of subpopulations of endometrial fibroblasts, localized into distinct functional uterine compartments, resembling the organization into basal and functional layers of the human endometrium.