196 resultados para BRAIN-STEM SLICES
Resumo:
Resting state functional magnetic resonance imaging (fMRI) reveals a distinct network of correlated brain function representing a default mode state of the human brain The underlying structural basis of this functional connectivity pattern is still widely unexplored We combined fractional anisotropy measures of fiber tract integrity derived from diffusion tensor imaging (DTI) and resting state fMRI data obtained at 3 Tesla from 20 healthy elderly subjects (56 to 83 years of age) to determine white matter microstructure e 7 underlying default mode connectivity We hypothesized that the functional connectivity between the posterior cingulate and hippocampus from resting state fMRI data Would be associated with the white matter microstructure in the cingulate bundle and fiber tracts connecting posterior cingulate gyrus With lateral temporal lobes, medial temporal lobes, and precuneus This was demonstrated at the p<0001 level using a voxel-based multivariate analysis of covariance (MANCOVA) approach In addition, we used a data-driven technique of joint independent component analysis (ICA) that uncovers spatial pattern that are linked across modalities. It revealed a pattern of white matter tracts including cingulate bundle and associated fiber tracts resembling the findings from the hypothesis-driven analysis and was linked to the pattern of default mode network (DMN) connectivity in the resting state fMRI data Out findings support the notion that the functional connectivity between the posterior cingulate and hippocampus and the functional connectivity across the entire DMN is based oil distinct pattern of anatomical connectivity within the cerebral white matter (C) 2009 Elsevier Inc All rights reserved
Resumo:
Superparamagnetic iron oxide nanoparticles (SPIONs) are applied in stem cell labeling because of their high magnetic susceptibility as compared with ordinary paramagnetic species, their low toxicity, and their ease of magnetic manipulation. The present work is the study of CD133(+) stem cell labeling by SPIONs coupled to a specific antibody (AC133), resulting in the antigenic labeling of the CD133+ stem cell, and a method was developed for the quantification of the SPION content per cell, necessary for molecular imaging optimization. Flow cytometry analysis established the efficiency of the selection process and helped determine that the CD133 cells selected by chromatographic affinity express the transmembrane glycoprotein CD133. The presence of antibodies coupled to the SPION, expressed in the cell membrane, was observed by transmission electron microscopy. Quantification of the SPION concentration in the marked cells using the ferromagnetic resonance technique resulted in a value of 1.70 x 10 (13) mol iron (9.5 pg) or 7.0 x 10 (6) nanoparticles per cell ( the measurement was carried out in a volume of 2 mu L containing about 6.16 x 10 5 pg iron, equivalent to 4.5 x 10 (11) SPIONs). (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Background: Approximately 60% of meningiomas are associated with peritumoral edema. Various causative factors have been discussed in the literature. The objective of this study was to investigate the correlation of PTBE with clinical, radiologic, and surgical aspects and recurrence of meningiomas. Methods: Sixty-one patients with benign meningiomas were chosen for surgical treatment by the Group of Brain Tumors and Metastasis of the Department of Neurosurgery. All patients underwent complete surgical resection (Simpson grades I and 2), and those with atypical and malignant histopathologic grades were excluded. Tumors located in the cavernous sinus, tuberculum sellae, foramen magnum, ventricles, and petroclival region were excluded. Results: Edema extension had a positive correlation with the higher recurrence rates (P=.042) and with the presence of irregular margins (P<.011) on bivariate analysis. Meningiomas with larger edema sizes also showed correlation with large meningiomas (P=.035), and the ones with smaller edema sizes correlated with the tentorial location (P=.032). Multivariate analysis showed an association between PTBE and the presence of seizures (odds ratio, 3.469), large meningiomas (odds ratio, 15.977), and for each cubic centimeter added to its size, the risk of edema increased 1.082 times (odds ratio). Conclusion: Peritumoral brain edema may be related to the invading potential of meningiomas and may play a role in the recurrence potential of the tumor. As a consequence, it is reasonable to consider the presence of edema as an additional factor to be taken into account when mapping out strategies for the treatment of meningiomas. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
In spite of considerable technical advance in MRI techniques, the optical resolution of these methods are still limited. Consequently, the delineation of cytoarchitectonic fields based on probabilistic maps and brain volume changes, as well as small-scale changes seen in MRI scans need to be verified by neuronanatomical/neuropathological diagnostic tools. To attend the current interdisciplinary needs of the scientific community, brain banks have to broaden their scope in order to provide high quality tissue suitable for neuroimaging- neuropathology/anatomy correlation studies. The Brain Bank of the Brazilian Aging Brain Research Group (BBBABSG) of the University of Sao Paulo Medical School (USPMS) collaborates with researchers interested in neuroimaging-neuropathological correlation studies providing brains submitted to postmortem MRI in-situ. In this paper we describe and discuss the parameters established by the BBBABSG to select and to handle brains for fine-scale neuroimaging-neuropathological correlation studies, and to exclude inappropriate/unsuitable autopsy brains. We tried to assess the impact of the postmortem time and storage of the corpse on the quality of the MRI scans and to establish fixation protocols that are the most appropriate to these correlation studies. After investigation of a total of 36 brains, postmortem interval and low body temperature proved to be the main factors determining the quality of routine MRI protocols. Perfusion fixation of the brains after autopsy by mannitol 20% followed by formalin 20% was the best method for preserving the original brain shape and volume, and for allowing further routine and immunohistochemical staining. Taken to together, these parameters offer a methodological progress in screening and processing of human postmortem tissue in order to guarantee high quality material for unbiased correlation studies and to avoid expenditures by post-imaging analyses and histological processing of brain tissue.
Resumo:
CD133 antigen is an integral membrane glycoprotein that can bind with different cells. Originally, however. this cellular surface antigen was expressed in human stem cells and in various cellular progenitors of the haematopoietic system. Human cord blood has been described as an excellent source of CD133(+) haematopoietic progenitor cells with a large application potential. One of the main objectives of the present study is to describe for the first time the ultrastructural characteristics of CD133(+) stem cells using transmission electronic microscopy. Another objective of the manuscript is to demonstrate through transmission electronic microscopy the molecular image of magnetic nanoparticles connected to the stein cells of great biotechnological importance, as well as demonstrating the value of this finding for electronic paramagnetic resonance and its related nanobioscientific value. Ultrastructural results showed the monoclonal antibody anti-CD133 bound to the superparamagnetic nanoparticles by the presence of electrondense granules in cell membrane, as well as in the cytoplasm, revealing the ultrastructural characteristics of CD133(+) cells, exhibiting a round morphology with discrete cytoplasmic projections, having an active nucleus that follows this morphology. The cellular cytoplasm was filled up with mitochondrias, as well as microtubules and vesicles pinocitic. characterizing the process as being related to internalization of the magnetic nanoparticles that were endocyted by the cells in question. Electronic paramagnetic resonance analysis of the CD133(+) stem cells detected that the small (spectrum) generated by the labelled cells comes from the superparamagnetic nanoparticles that are bound to them. These results strongly suggest that these CD133(+) cells can be used in nanobiotechnology applications, with benefits in different biomedical areas.
Resumo:
The aim of this work is to provide a quantitative method for analysis of the concentration of superparamagnetic iron oxide nanoparticles (SPION), determined by means of ferromagnetic resonance (FMR), with the nanoparticles coupled to a specific antibody (AC133), and thus to express the antigenic labeling evidence for the stem cells C D133(+). The FMR efficiency and sensitivity were proven adequate for detecting and quantifying the low amounts of iron content in the C D133(+) cells (similar to 6.16 x 10(5) pg in the volume of 2 mu l containing 4.5 x 1011 SPION). The quantitative method led to the result of 1.70 x 10(-13) mol of Fe (9.5 pg), or 7.0 x 10(6) nanoparticles per cell. For the quantification analysis via the FMR technique it was necessary to carry out a preliminary quantitative visualization of iron oxide-labeled cells in order to ensure that the nanoparticles coupled to the antibodies are indeed tied to the antigen at the stem cell surface and that the cellular morphology was conserved, as proof of the validity of this method. The quantitative analysis by means of FMR is necessary for determining the signal intensity for the study of molecular imaging by means of magnetic resonance imaging (MRI).
Resumo:
Medulloblastomas are the most common malignant tumors of the central nervous system in childhood. The incidence is about 19-20% between children younger than 16 years old with peak incidence between 4 and 7 years. Despite its sensibility to no specific therapeutic means like chemotherapy and radiotherapy, the treatment is very aggressive and frequently results in regression, growth deficit, and endocrine dysfunction. From this point of view, new treatment approaches are needed such as molecular targeted therapies. Studies in glioblastoma demonstrated that ASPM gene was overexpressed when compared to normal brain and ASPM inhibition by siRNA-mediated inhibits tumor cell proliferation and neural stem cell proliferation, supporting ASPM gene as a potential molecular target in glioblastoma. The aim of this work was to evaluate ASPM expression in medulloblastoma fragment samples, and to compare the results with the patient clinical features. Analysis of gene expression was performed by quantitative PCR real time using SYBR Green system in tumor samples from 37 children. The t test was used to analyze the gene expression, and Mann-Whitney test was performed to analyze the relationship between gene expressions and clinical characteristics. Kaplan-Meier test evaluated curve survival. All samples overexpressed ASPM gene more than 40-fold. However, we did not find any association between the overexpressed samples and the clinical parameters. ASPM overexpression may modify the ability of stem cells to differentiate during the development of the central nervous system, contributing to the development of medulloblastoma, a tumor of embryonic origin from cerebellar progenitor cells.
Resumo:
The ability of mesenchymal stem cells to generate functional neurons in culture is still a matter of controversy. In order to assess this issue, we performed a functional comparison between neuronal differentiation of human MSCs and fetal-derived neural stem cells (NSCs) based on morphological, immunocytochemical, and electrophysiological criteria. Furthermore, possible biochemical mechanisms involved in this process were presented. NF200 immunostaining was used to quantify the yield of differentiated cells after exposure to CAMP. The addition of a PKA inhibitor and Ca(2+) blockers to the differentiation medium significantly reduced the yield of differentiated cells. Activation of CREB was also observed on MSCs during maturation. Na(+)-, K(+)-, and Ca(2+)-voltage-dependent currents were recorded from MSCs-derived cells. In contrast, significantly larger Na(+) currents, firing activity, and spontaneous synaptic currents were recorded from NSCs. Our results indicate that the initial neuronal differentiation of MSCs is induced by CAMP and seems to be dependent upon Ca(2+) and the PKA pathway. However, compared to fetal neural stem cells, adult mesenchymal counterparts are limited in their neurogenic potential. Despite the similar yield of neuronal cells, NSCs achieved a more mature functional state. Description of the underlying mechanisms that govern MSCs` differentiation toward a stable neuronal phenotype and their limitations provides a unique opportunity to enhance our understanding of stem cell plasticity. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
OBJECTIVE: We present observations of the anatomy of the sylvian fissure region and their clinical application in neuroimaging, microsurgery for middle cerebral artery aneurysms and insular lesions, frontobasal resections, and epilepsy Surgery. METHODS: Sixty adult cadaveric hemispheres and 12 adult cadaveric heads were studied after perfusion of the arteries and veins with colored latex. The anatomic information was applied in more than 200 microsurgeries in and around the sylvian fissure region in the past 15 years. RESULTS: The sylvian fissure extends from the basal to the lateral surface of the brain and presents 2 compartments on each surface, I superficial (temporal stem and its ramii) and 1 deep (anterior and lateral operculoinsular compartments). The temporal operculum is in opposition to the frontal and parietal opercula (planum polare versus inferior frontal and precentral gyri, Heschl`s versus postcentral gyri, planum temporale versus supramarginal gyrus). The inferior frontal, precentral, and postcentral gyri cover the anterior, middle, and posterior thirds of the lateral surface of the insula, respectively. The pars triangularis covers the apex of the insula, located immediately distal to the genu of the middle cerebral artery. The clinical application of the anatomic information presented in this article is in angiography, middle cerebral artery aneurysm surgery, insular resection, frontobasal resection, and amygdalohippocampectomy, and hemispherotomy. CONCLUSION: The anatomic relationships of the sylvian fissure region can be helpful in preoperative planning and can serve as reliable intraoperative navigation landmarks in microsurgery involving that region.
Resumo:
The human endometrium is a dynamic tissue that undergoes cycles of growth and regression with each menstrual cycle. Adult progenitor stem cells are likely responsible for this remarkable regenerative capacity; these same progenitor stem cells may also have an enhanced capacity to generate endometriosis if shed in a retrograde fashion. The progenitor stem cells reside in the uterus; however, less-committed mesenchymal stem cells may also travel from other tissues such as bone marrow to repopulate the progenitor population. Mesenchymal stem cells are also involved in the pathogenesis of endometriosis and may be the principle source of endometriosis outside of the peritoneal cavity when they differentiate into endometriosis in ectopic locations. Finally, besides progenitor stem cells, recent publications have identified multipotent stem cells in the endometrium. These multipotent stem cells are a readily available source of cells that are useful in tissue engineering and regenerative medicine. Endometrial stem cells have been used to generate chondrocytes, myocytes, neurons, and adiposites in vitro as well as to replace dopaminergic neurons in a murine model of Parkinson`s disease.
Resumo:
Study design: A prospective, non-randomized clinical series trial. Objective: To evaluate the effect of autogenous undifferentiated stem cell infusion for the treatment of patients with chronic spinal cord injury (SCI) on somatosensory evoked potentials (SSEPs). Setting: A public tertiary hospital in Sao Paulo, Brazil. Methods: Thirty-nine consecutive patients with diagnosed complete cervical and thoracic SCI for at least 2 years and with no cortical response in the SSEP study of the lower limbs were included in the trial. The trial patients underwent peripheral blood stem cell mobilization and collection. The stem cell concentrate was cryopreserved and reinfused through arteriography into the donor patient. The patients were followed up for 2.5 years and submitted to SSEP studies to evaluate the improvement in SSEPs after undifferentiated cell infusion. Results: Twenty-six (66.7%) patients showed recovery of somatosensory evoked response to peripheral stimuli after 2.5 years of follow-up. Conclusion: The 2.5-year trial protocol proved to be safe and improved SSEPs in patients with complete SCI. Sponsorship: None. Spinal Cord (2009) 47, 733-738; doi: 10.1038/sc.2009.24; published online 31 March 2009
Resumo:
Several studies have suggested an important role for brain-derived neurotrophic factor (BDNF) in the pathophysiology and therapeutics of bipolar disorder (BPD). The mechanisms underlying the therapeutic effects of lithium in BPD seem to involve a direct regulation of neurotrophic cascades. However, no clinical study evaluated the specific effects of lithium on BDNF levels in subjects with BPD. This study aims to investigate the effects of lithium monotherapy on BDNF levels in acute mania. Ten subjects with bipolar I disorder in a manic episode were evaluated at baseline and after 28 days of lithium therapy. Changes in plasma BDNF levels and Young Mania Rating Scale (YMRS) scores were analyzed. A significant increase in plasma BDNF levels was observed after 28 days of therapy with lithium monotherapy (510.9 +/- 127.1 pg/mL) compared to pre-treatment (406.3 +/- 69.5 pg/mL) (p = 0.03). Although it was not found a significant association between BDNF levels and clinical improvement (YMRS), 87% of responders presented an increase in BDNF levels after treatment with lithium. These preliminary data showed lithium`s direct effects on BDNF levels in bipolar mania, suggesting that short-term lithium treatment may activate neurotrophic cascades. Further studies with larger samples and longer period may confirm whether this biological effect is involved in the therapeutic efficacy of lithium in BPD. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background. Some neuroimaging studies have supported the hypothesis of progressive brain changes after a first episode of psychosis. We aimed to determine whether (i) first-episode psychosis patients would exhibit more pronounced brain volumetric changes than controls over time and (ii) illness course/treatment would relate to those changes. Method. Longitudinal regional grey matter volume and ventricle : brain ratio differences between 39 patients with first-episode psychosis (including schizophrenia and schizophreniform disorder) and 52 non-psychotic controls enrolled in a population-based case-control study. Results. While there was no longitudinal difference in ventricle : brain ratios between first-episode psychosis subjects and controls, patients exhibited grey matter volume changes, indicating a reversible course in the superior temporal cortex and hippocampus compared with controls. A remitting course was related to reversal of baseline temporal grey matter deficits. Conclusions. Our findings do not support the hypothesis of brain changes indicating a progressive course in the initial phase of psychosis. Rather, some brain volume abnormalities may be reversible, possibly associated with a better illness course.
Resumo:
Objectives. The aim of the present study is to investigate serum BDNF levels in older depressed patients as compared to healthy elderly controls. Methods. Twenty-nine elderly subjects with major depression and 42 healthy older adults were enrolled to this study. All depressed patients were antidepressant-free for at least 1 month prior clinical and laboratorial assessments. Serum BDNF levels were determined by sandwich ELISA. Results. BDNF levels were lower in elderly depressed patients as compared to controls (P = 0.034). Patients with late-onset depression had the lowest BDNF level (median 478.5, interquartile range 373.5-740.9 pg/l) when compared to early-onset depression (median 620.7, interquartile range 366.1-971.9 pg/l) and healthy controls (median 711.3, interquartile range 534.7-1181.0 pg/l) (P < 0.03). Conclusions. Reduced serum BDNF level may be a state marker of late-life depression in non-medicated elderly patients. Our findings provide further evidences that reduced neurotrophic support may have an important role in the physiopathology of late-life depression.
Resumo:
Recent findings showing significant correlations between phospholipase A2 (PLA2) activity and structural changes in schizophrenic brains contribute to the membrane hypothesis of schizophrenia, which was hampered because a clean functional link between elevated PLA2 activity and brain structure was missing (Neuroimage, 2010; 52: 1314-1327). We measured membrane fluidity parameters and found that brain membranes isolated from the prefrontal cortex of schizophrenic patients showed significantly increased flexibility of fatty acid chains. Our findings support a possible link between elevated PLA2 activity in cortical areas of schizophrenic patients and subsequent alterations of the biophysical parameters of neuronal membranes leading to structural changes in these areas.