113 resultados para transparent conducting oxides,
Resumo:
Self-assembled materials consisting of V(2)O(5), polyallylamine (PAR) and silver nanoparticles (AgNPs) were obtained by the layer-by-layer (LbL) method, aiming at their application as electrodes for lithium-ion batteries and electrochromic devices. The method employed herein allowed for linear growth of visually homogeneous films composed of V(2)O(5), V(2)O(5)/PAH, and V(2)O(5)/PAH/AgNP with 15 bilayers. According to the Fourier transform infrared spectra, interaction between the oxygen atom of the vanadyl group and the amino group should be responsible for the growth of these films. This interaction also enabled establishment of an electrostatic shield between the lithium ions and the sites with higher negative charge, thereby raising the ionic mobility and consequently increasing the energy storage capacity and reducing the response time. According to the site-saturation model and the electrochemical and spectroelectrochemical results, the presence of PAH in the self-assembled host matrix decreased the number of V(2)O(5) electroactive sites. Thus, AgNPs were stabilized in PAR and inserted into the nanoarchitecture, so as to enhance the specific capacity. This should provide new conducting pathways and connect isolated V(2)O(5) particles in the host matrix. Therefore, new nanoarchitectures for specific interactions were formed spontaneously and chosen as examples in this work, aiming to demonstrate the potentiality of the adopted self-assembled method for enhancing the charge transport rate into the host matrices. The obtained materials displayed suitable properties for use as electrodes in lithium batteries and electrochromic devices.
Resumo:
The switch from within-hive activities to foraging behavior is a major transition in the life cycle of a honeybee (Apis mellifera) worker. A prominent regulatory role in this switch has long been attributed to juvenile hormone (JH), but recent evidence also points to the yolk precursor protein vitellogenin as a major player in behavioral development. In the present study, we injected vitellogenin double-stranded RNA (dsVg) into newly emerged worker bees of Africanized genetic origin and introduced them together with controls into observation hives to record flight behavior. RNA interference-mediated silencing of vitellogenin gene function shifted the onset of long-duration flights (> 10 min) to earlier in life (by 3-4 days) when compared with sham and untreated control bees. In fact, dsVg bees were observed conducting such flights extremely precociously, when only 3 days old. Short-duration flights (< 10 min), which bees usually perform for orientation and cleaning, were not affected. Additionally, we found that the JH titer in dsVg bees collected after 7 days was not significantly different from the controls. The finding that depletion of the vitellogenin titer can drive young bees to become extremely precocious foragers could imply that vitellogenin is the primary switch signal. At this young age, downregulation of vitellogenin gene activity apparently had little effect on the JH titer. As this unexpected finding stands in contrast with previous results on the vitellogenin/JH interaction at a later age, when bees normally become foragers, we propose a three-step sequence in the constellation of physiological parameters underlying behavioral development.
Resumo:
BACKGROUND: Retention of airway secretions is a common and serious problem in ventilated patients. Treating or avoiding secretion retention with mucus thinning, patient-positioning, airway suctioning, or chest or airway vibration or percussion may provide short-term benefit. METHODS: In a series of laboratory experiments with a test-lung system we examined the role of ventilator settings and lung-impedance on secretion retention and expulsion. Known quantities of a synthetic dye-stained mucus simulant with clinically relevant properties were injected into a transparent tube the diameter of an adult trachea and exposed to various mechanical-ventilation conditions. Mucus-simulant movement was measured with a photodensitometric technique and examined with image-analysis software. We tested 2 mucus-simulant viscosities and various peak flows, inspiratory/ expiratory flow ratios, intrinsic positive end-expiratory pressures, ventilation waveforms, and impedance values. RESULTS: Ventilator settings that produced flow bias had a major effect on mucus movement. Expiratory How bias associated with intrinsic positive end-expiratory pressure generated by elevated minute ventilation moved mucus toward the airway opening, whereas intrinsic positive end-expiratory pressure generated by increased airway resistance moved the mucus toward the lungs. Inter-lung transfer of mucus simulant occurred rapidly across the ""carinal divider"" between interconnected test lungs set to radically different compliances; the mucus moved out of the low-compliance lung and into the high-compliance lung. CONCLUSIONS: The movement of mucus simulant was influenced by the ventilation pattern and lung impedance. Flow bias obtained with ventilator settings may clear or embed mucus during mechanical ventilation.
Resumo:
Lipid emulsions that mimic natural lipoproteins help to understand the metabolism and the constitutional organization of circulating lipids. Chylomicrons synthesised by enterocyte cells usually contain oxysterols such as 7-ketocholesterol (7-KC). Here we describe the development of a 7-KC-containing emulsion as a model for oxisterol-rich chylomicron. Different amounts of 7-KC were used. Emulsion characteristics as effective diameter, lipid saturation with radiolabeled lipids was evaluated. In conclusion, the production of a synthetic 7-KC-rich emulsion resembling hylomicrons was feasible, being a model for in vivo metabolism studies.
Resumo:
Clinical trial is considered a breakthrough method in medicine and essential to the development of new drugs. Clinical trials that comply with international and national regulations require an appropriate infrastructure and team qualification. The goal of this study was to evaluate clinical trial groups in Brazil: professional qualification, site structure regulatory knowledge and Good Clinical Practice (GCP) adherence. This is a transversal study with investigators (PI) and sub investigator (SI). PI and SI data were initially identified from Curriculum Lattes from National Advice of Scientific and Technological Development. The study participants were submitted to a questionnaire, which was composed of qualitative and quantitative questions. A hundred PI and SI were interviewed. The most representative Brazilian regions were Southeast (68%) and South (18%). The main institutions involved were HCFMUSP complex and UNIFESP among others institutions. Academic graduation is observed in 86% of them and the higher degree is Doctorate (62%). 91% had GCP knowledge although only 74% had formal training. About the team, all of them are multidisciplinary with majority of nurses and pharmaceuticals. 88% had GCP knowledge although only 77% had formal training. 36%, 60% and 44% of clinical trials were in phase II,III and IV. In conclusion, researchers have appropriate skills and knowledge to perform clinical studies however there is still a need for training. The centers where the researchers work, have trained staff and adequate infrastructure for conducting clinical trials phase II,III and IV. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The aim of this study was to evaluate the frequency and clinical associations of HLA-DR alleles in Brazilian Caucasian patients with polyarteritis nodosa (PAN) or microscopic polyangiitis (MPA). We evaluated 29 Caucasian patients with vasculitis classified as PAN or MPA according to the American College of Rheumatology (ACR) 1990 Criteria, Chapel Hill Consensus Conference (CHCC) nomenclature for vasculitis and EULAR recommendations for conducting clinical studies in systemic vasculitis. HLA-DR alleles were typed using polymerase chain reaction-amplified DNA, hybridized with sequence-specific low resolution primers. DNA obtained from 59 Caucasian healthy blood donors were used as control. In order to evaluate if a specific HLA may have influence on the clinical profile of those diseases, we also divided the patients according to Birmingham vasculitis score (BVAS) and Five-Factors Score (FFS) at the time of diagnosis. Increased frequency of HLA-DRB1*16 (p = 0.023) and DRB4*01 (p = 0.048) was found in patients with higher disease activity at the time of diagnosis (BVAS >= 22). Patients with less severe disease (FFS = 0) had a higher frequency of HLA-DRB1*03 (p = 0.011). Patients with gastrointestinal tract involvement had significantly increased frequency of HLA-DRB1*11 or B1*12 (p = 0.046), B1*13 (p = 0.021) and B3 (p = 0.008). In contrast, patients with renal disease, had higher frequency of DRB1*15 or DRB1*16 (p = 0.035) and B5 (p = 0.035). In the subgroup of patients with MPA, increased frequency of HLA-DRB1*15 was found in patients with BVAS >= 22 (p = 0.038) and FFS >= 1 (p = 0.039) suggesting that this allele is associated with more aggressive disease. Antineutrophil cytoplasmic antibodies (ANCA) negative MPA patients had significantly increased frequency of HLA-DRB1*11 or DRB1*12 when compared to ANCA positive patients (p = 0.023). Our results suggest that HLA-DR alleles may influence PAN and MPA clinical expression and outcome and that in MPA they participate in the mechanisms involved in the development to ANCA.
Resumo:
Stimulating neural electrodes are required to deliver charge to an environment that presents itself as hostile. The electrodes need to maintain their electrical characteristics (charge and impedance) in vivo for a proper functioning of neural prostheses. Here we design implantable multi-walled carbon nanotubes coating for stainless steel substrate electrodes, targeted at wide frequency stimulation of deep brain structures. In well-controlled, low-frequency stimulation acute experiments, we show that multi-walled carbon nanotube electrodes maintain their charge storage capacity (CSC) and impedance in vivo. The difference in average CSCs (n = 4) between the in vivo (1.111 mC cm(-2)) and in vitro (1.008 mC cm(-2)) model was statistically insignificant (p > 0.05 or P-value = 0.715, two tailed). We also report on the transcription levels of the pro-inflammatory cytokine IL-1 beta and TLR2 receptor as an immediate response to low-frequency stimulation using RT-PCR. We show here that the IL-1 beta is part of the inflammatory response to low-frequency stimulation, but TLR2 is not significantly increased in stimulated tissue when compared to controls. The early stages of neuroinflammation due to mechanical and electrical trauma induced by implants can be better understood by detection of pro-inflammatory molecules rather than by histological studies. Tracking of such quantitative response profits from better analysis methods over several temporal and spatial scales. Our results concerning the evaluation of such inflammatory molecules revealed that transcripts for the cytokine IL-1 beta are upregulated in response to low-frequency stimulation, whereas no modulation was observed for TLR2. This result indicates that the early response of the brain to mechanical trauma and low-frequency stimulation activates the IL-1 beta signaling cascade but not that of TLR2.
Resumo:
In ostariophysan fish, the detection of alarm substance released from the skin of a conspecific or a sympatric heterospecific may elicit alarm reactions or antipredator behavioral responses. In this study, experiments were performed to characterize and quantify the behavioral response threshold of Leporinus piau, both individually and in schools, to growing dilutions of conspecific (CAS) and heterospecific skin extract (HAS). The predominant behavioral response to CAS stock stimulation was biphasic for fish held individually, with a brief initial period of rapid swimming followed by a longer period of immobility or reduced swimming activity. As the dilution of skin extract was increased, the occurrence and magnitude of the biphasic alarm response tended to decrease, replaced by a slowing of locomotion. Slowing was the most common antipredator behavior, observed in 62.5% of animals submitted to HAS stimulation. School cohesion, measured as proximity of fish to the center of the school, and swimming activity near the water surface significantly increased after exposure to CAS when compared with the control group exposed to distilled water. Histological analysis of the epidermis revealed the presence of Ostariophysi-like club cells. The presence of these cells and the behavioral responses to conspecific and heterospecific skin extract stimulation suggest the existence of a pheromone alarm system in L. piau similar to that in Ostariophysi, lending further support for the neural processing of chemosensory information in tropical freshwater fish.