196 resultados para skew--symmetry
Resumo:
Dielectric and Raman scattering experiments were performed on polycrystalline Pb(1-x)Ba(x)TiO(3) thin films (x=0.40 and 0.60) as a function of temperature. The dielectric study on single phase compositions revealed that a diffuse-type phase transition occurred upon transformation of the cubic paraelectric to the tetragonal ferroelectric phase in all thin films, which showed a broadening of the dielectric peak. Diffusivity was found to increase with increasing barium contents in the composition range under study. In addition, the temperature dependence of Raman scattering spectra was investigated through the ferroelectric phase transition. The temperature dependence of the phonon frequencies was used to characterize the phase transitions. Raman modes persisted above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive. The origin of these modes was interpreted as a breakdown of the local cubic symmetry by chemical disorder. The lack of a well-defined transition temperature and the presence of broadbands in some temperature intervals above the paraferroelectric phase transition temperature suggest a diffuse-type phase transition. (C) 2008 American Institute of Physics.
Resumo:
We study a class of lattice field theories in two dimensions that includes gauge theories. We show that in these theories it is possible to implement a broader notion of local symmetry, based on semisimple Hopf algebras. A character expansion is developed for the quasitopological field theories, and partition functions are calculated with this tool. Expected values of generalized Wilson loops are defined and studied with the character expansion.
Resumo:
Objective: Postural assessment through photography is a simple method that allows the acquisition of quantitative values to define the alignment of body segments. The purpose of this study was to quantitatively assess the postural alignment of several body segments in standing through anterior, posterior, and lateral views. Methods: In this cross-sectional study, 122 subjects were initially evaluated. Seven subjects were excluded from the study after cluster analysis. The final sample had 115 subjects, 75% women with a mean age of 26 + 7 years. Photographs were taken from anterior, posterior, and lateral views after placement of markers on specific anatomical points. Photographs were analyzed using free Postural Analysis Software/Software of Postural Analysis (PAS/SAPO). Quantitative values for postural analysis variables were ascertained for head, upper and lower limbs, and trunk, along with the frequency of inclinations to the left and to the right. Results: Regarding the head, 88% of the sample presented some inclination, 67% of which was to the right. There was a predominance of right inclination of the shoulder and pelvis in 68% and 43% of study subjects, respectively. Lower limbs presented mean alignment of 178 in the anterior view, and the trunk showed predominant right inclination in 66% of participants. Conclusion: Small asymmetries were observed in anterior and posterior views. This study suggests that there is no symmetry in postural alignment and that small asymmetries represent the normative standard for posture in standing. (J Manipulative Physiol Ther 2011;34:371-380)
Resumo:
A unidirectional fiber composite is considered here, the fibers of which are empty cylindrical holes periodically distributed in a transversely isotropic piezoelectric matrix, The empty-fiber cross-section is circular and the periodicity is the same in two directions at an angle pi/2 or pi/3. Closed-form formulae for all electromechanical effective properties of these 3-1 longitudinally periodic porous piezoelectric materials are presented. The derivation of such expressions is based on the asymptotic homogenization method as a limit of the effective properties of two-phase transversely isotropic parallel fiber-reinforced composites when the fibers properties tend to zero. The plane effective coefficients satisfy the corresponding Schulgasser-Benveniste-Dvorak universal type of relations, A new relation among the antiplane effective constants from the solutions of two antiplane strains and potential local problems is found. This relation is valid for arbitrary shapes of the empty-fiber cross-sections. Based on such a relation, and using recent numerical results for isotropic conductive composites, the antiplane effective properties are computed for different geometrical shapes of the empty-fiber cross-section. Comparisons with other analytical and numerical theories are presented. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A geometrical approach of the finite-element analysis applied to electrostatic fields is presented. This approach is particularly well adapted to teaching Finite Elements in Electrical Engineering courses at undergraduate level. The procedure leads to the same system of algebraic equations as that derived by classical approaches, such as variational principle or weighted residuals for nodal elements with plane symmetry. It is shown that the extension of the original procedure to three dimensions is straightforward, provided the domain be meshed in first-order tetrahedral elements. The element matrices are derived by applying Maxwell`s equations in integral form to suitably chosen surfaces in the finite-element mesh.
Resumo:
This investigative work is concerned with the flow around a circular cylinder submitted to forced transverse oscillations. The goal is to investigate how the transition to turbulence is initiated in the wake for cases with different Reynolds numbers (Re) and displacement amplitudes (A). For each Re the motion frequency is kept constant, close to the Strouhal number of the flow around a fixed cylinder at the same Re. Stability analysis of two-dimensional periodic flows around a forced-oscillating cylinder is carried out with respect to three-dimensional infinitesimal perturbations. The procedure consists of performing a Floquet type analysis of time-periodic base flows, computed using the spectral/hp element method. With the results of the Floquet calculations, considerations regarding the stability of the system are drawn, and the form of the instability at its onset is obtained. The critical Reynolds number is observed to change with the amplitude of oscillation. With respect to instabilities, unstable modes with the same symmetry as mode A of a fixed cylinder are observed; however, they present different wavelengths. Also, the instabilities observed for the oscillating cylinder are distinctively stronger in the braid shear layers. Other unstable modes similar to mode B are found. Quasi-periodic modes are observed in the 2S wake, and subharmonic mode occurrences are reported in P + S wakes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper deals with the calculation of the discrete approximation to the full spectrum for the tangent operator for the stability problem of the symmetric flow past a circular cylinder. It is also concerned with the localization of the Hopf bifurcation in laminar flow past a cylinder, when the stationary solution loses stability and often becomes periodic in time. The main problem is to determine the critical Reynolds number for which a pair of eigenvalues crosses the imaginary axis. We thus present a divergence-free method, based on a decoupling of the vector of velocities in the saddle-point system from the vector of pressures, allowing the computation of eigenvalues, from which we can deduce the fundamental frequency of the time-periodic solution. The calculation showed that stability is lost through a symmetry-breaking Hopf bifurcation and that the critical Reynolds number is in agreement with the value presented in reported computations. (c) 2007 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
Three-dimensional modeling of piezoelectric devices requires a precise knowledge of piezoelectric material parameters. The commonly used piezoelectric materials belong to the 6mm symmetry class, which have ten independent constants. In this work, a methodology to obtain precise material constants over a wide frequency band through finite element analysis of a piezoceramic disk is presented. Given an experimental electrical impedance curve and a first estimate for the piezoelectric material properties, the objective is to find the material properties that minimize the difference between the electrical impedance calculated by the finite element method and that obtained experimentally by an electrical impedance analyzer. The methodology consists of four basic steps: experimental measurement, identification of vibration modes and their sensitivity to material constants, a preliminary identification algorithm, and final refinement of the material constants using an optimization algorithm. The application of the methodology is exemplified using a hard lead zirconate titanate piezoceramic. The same methodology is applied to a soft piezoceramic. The errors in the identification of each parameter are statistically estimated in both cases, and are less than 0.6% for elastic constants, and less than 6.3% for dielectric and piezoelectric constants.
Resumo:
By means of continuous topology optimization, this paper discusses the influence of material gradation and layout in the overall stiffness behavior of functionally graded structures. The formulation is associated to symmetry and pattern repetition constraints, including material gradation effects at both global and local levels. For instance, constraints associated with pattern repetition are applied by considering material gradation either on the global structure or locally over the specific pattern. By means of pattern repetition, we recover previous results in the literature which were obtained using homogenization and optimization of cellular materials.
Resumo:
Static mixers with improved performance were developed from CFD simulations in a stepwise approach. The relevant geometric features of simple mixer designs and the corresponding mixing mechanisms-laminar shear, elongational flow, and distributive mixing-were identified first. This information was used to formulate guidelines for the development of new geometries. The solid elements of the static mixer should: (a) provide restrictions to the flow; (b) deflect the flow; (c) be sequentially rotated around the flow direction to provide symmetry; (d) extend from the center of the pipe to the vicinity of the walls to avoid short-circuiting; and (e) distribute and remix the flow. Based on these guidelines, two improved mixer designs were developed: the DS A-I mixer has a good mixing efficiency and an acceptable pressure drop; the Fins 35 degrees mixer is more efficient and compact, but requires a larger pressure drop. Their performance indicates that their use is possible on industrial applications.
Resumo:
This paper investigates the characteristics of the Power Spectral Density (PSD) of chaotic signals generated by skew tent maps. The influence of the Lyapunov exponent on the autocorrelation sequence and on the PSD is evaluated via computational simulations. We conclude that the essential bandwidth of these signals is strongly related to this exponent and they can be low-pass or high-pass depending on the family`s parameter. This way, the PSD of a chaotic signal is a function of the generating map although this is not a one-to-one relationship. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This work considers the open-loop control problem of steering a two-level quantum system from any initial to any final condition. The model of this system evolves on the state space X = SU(2), having two inputs that correspond to the complex amplitude of a resonant laser field. A symmetry preserving flat output is constructed using a fully geometric construction and quaternion computations. Simulation results of this flatness-based open-loop control are provided.
Resumo:
Over the years, crop insurance programs became the focus of agricultural policy in the USA, Spain, Mexico, and more recently in Brazil. Given the increasing interest in insurance, accurate calculation of the premium rate is of great importance. We address the crop-yield distribution issue and its implications in pricing an insurance contract considering the dynamic structure of the data and incorporating the spatial correlation in the Hierarchical Bayesian framework. Results show that empirical (insurers) rates are higher in low risk areas and lower in high risk areas. Such methodological improvement is primarily important in situations of limited data.
Resumo:
This study focuses on the floral development of Copaifera langsdorffii to elucidate uncertain features in its floral morphology, such as the tetramerous calyx, lack of petals, blackened anthers and their supposed sterility, as well as polyembryony. Buds and flowers were dissected and prepared for examination under scanning electron and light microscopes. The floral apex initiates two bracteoles, five sepals, five petals, five outer stamens, five inner stamens, and one carpel. Order is helical for sepals, reversed unidirectional for the petals, and unidirectional for two whorls of stamens. The tetramerous calyx results from the union of two adaxial sepal primordia, which forms one large sepal and three other smaller sepals. Although the flower lacks petals, the petal primordia are initiated but do not elongate like the other floral organs, remaining as petal rudiments. Ten stamens are formed in two distinct whorls. Formation within each whorl is almost simultaneous, and the inner whorl is formed shortly after the outer. During organ elongation, the inner stamen primordia bases are reoriented outward, resulting in a single whorl of stamens. The darkened anthers have viable pollen grains. Thus, there is no relation between sterility and the dark coloration of the anthers. No signs of extranumerary embryos are observed; therefore, polyembryony is not confirmed. Although studies on floral development of Detarieae have been reported, few Neotropical genera of the tribe (such as Copaifera) have been studied.
Resumo:
Starting with an initial price vector, prices are adjusted in order to eliminate the excess demand and at the same time to keep the transfers to the sellers as low as possible. In each step of the auction, to which set of sellers should those transfers be made is the key issue in the description of the algorithm. We assume additively separable utilities and introduce a novel distinction by considering multiple sellers owing multiple identical objects and multiple buyers with an exogenously defined quota, consuming more than one object but at most one unit of a seller`s good and having multi-dimensional payoffs. This distinction induces a necessarily more complicated construction of the over-demanded sets than the constructions of these sets for the other assignment games. For this approach, our mechanism yields the buyer-optimal competitive equilibrium payoff, which equals the buyer-optimal stable payoff. The symmetry of the model allows to getting the seller-optimal stable payoff and the seller-optimal competitive equilibrium payoff can then be also derived.