109 resultados para integer lattice
Resumo:
A simplex-lattice statistical project was employed to study an optimization method for a preservative system in an ophthalmic suspension of dexametasone and polymyxin B. The assay matrix generated 17 formulas which were differentiated by the preservatives and EDTA (disodium ethylene diamine-tetraacetate), being the independent variable: X-1 = chlorhexidine digluconate (0.010 % w/v); X-2 = phenylethanol (0.500 % w/v); X-3 = EDTA (0.100 % w/v). The dependent variable was the Dvalue obtained from the microbial challenge of the formulas and calculated when the microbial killing process was modeled by an exponential function. The analysis of the dependent variable, performed using the software Design Expert/W, originated cubic equations with terms derived from stepwise adjustment method for the challenging microorganisms: Pseudomonas aeruginosa, Burkholderia cepacia, Staphylococcus aureus, Candida albicans and Aspergillus niger. Besides the mathematical expressions, the response surfaces and the contour graphics were obtained for each assay. The contour graphs obtained were overlaid in order to permit the identification of a region containing the most adequate formulas (graphic strategy), having as representatives: X-1 = 0.10 ( 0.001 % w/v); X-2 = 0.80 (0.400 % w/v); X-3 = 0.10 (0.010 % w/v). Additionally, in order to minimize responses (Dvalue), a numerical strategy corresponding to the use of the desirability function was used, which resulted in the following independent variables combinations: X-1 = 0.25 (0.0025 % w/v); X-2 = 0.75 (0.375 % w/v); X-3 = 0. These formulas, derived from the two strategies (graphic and numerical), were submitted to microbial challenge, and the experimental Dvalue obtained was compared to the theoretical Dvalue calculated from the cubic equation. Both Dvalues were similar to all the assays except that related to Staphylococcus aureus. This microorganism, as well as Pseudomonas aeruginosa, presented intense susceptibility to the formulas independently from the preservative and EDTA concentrations. Both formulas derived from graphic and numerical strategies attained the recommended criteria adopted by the official method. It was concluded that the model proposed allowed the optimization of the formulas in their preservation aspect.
Resumo:
In the protein folding problem, solvent-mediated forces are commonly represented by intra-chain pairwise contact energy. Although this approximation has proven to be useful in several circumstances, it is limited in some other aspects of the problem. Here we show that it is possible to achieve two models to represent the chain-solvent system. one of them with implicit and other with explicit solvent, such that both reproduce the same thermodynamic results. Firstly, lattice models treated by analytical methods, were used to show that the implicit and explicitly representation of solvent effects can be energetically equivalent only if local solvent properties are time and spatially invariant. Following, applying the same reasoning Used for the lattice models, two inter-consistent Monte Carlo off-lattice models for implicit and explicit solvent are constructed, being that now in the latter the solvent properties are allowed to fluctuate. Then, it is shown that the chain configurational evolution as well as the globule equilibrium conformation are significantly distinct for implicit and explicit solvent systems. Actually, strongly contrasting with the implicit solvent version, the explicit solvent model predicts: (i) a malleable globule, in agreement with the estimated large protein-volume fluctuations; (ii) thermal conformational stability, resembling the conformational hear resistance of globular proteins, in which radii of gyration are practically insensitive to thermal effects over a relatively wide range of temperatures; and (iii) smaller radii of gyration at higher temperatures, indicating that the chain conformational entropy in the unfolded state is significantly smaller than that estimated from random coil configurations. Finally, we comment on the meaning of these results with respect to the understanding of the folding process. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In the assignment game of Shapley and Shubik [Shapley, L.S., Shubik, M., 1972. The assignment game. I. The core, International journal of Game Theory 1, 11-130] agents are allowed to form one partnership at most. That paper proves that, in the context of firms and workers, given two stable payoffs for the firms there is a stable payoff which gives each firm the larger of the two amounts and also one which gives each of them the smaller amount. Analogous result applies to the workers. Sotomayor [Sotomayor, M., 1992. The multiple partners game. In: Majumdar, M. (Ed.), Dynamics and Equilibrium: Essays in Honor to D. Gale. Mcmillian, pp. 322-336] extends this analysis to the case where both types of agents may form more than one partnership and an agent`s payoff is multi-dimensional. Instead, this note concentrates in the total payoff of the agents. It is then proved the rather unexpected result that again the maximum of any pair of stable payoffs for the firms is stable but the minimum need not be, even if we restrict the multiplicity of partnerships to one of the sides. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Starting with an initial price vector, prices are adjusted in order to eliminate the excess demand and at the same time to keep the transfers to the sellers as low as possible. In each step of the auction, to which set of sellers should those transfers be made is the key issue in the description of the algorithm. We assume additively separable utilities and introduce a novel distinction by considering multiple sellers owing multiple identical objects and multiple buyers with an exogenously defined quota, consuming more than one object but at most one unit of a seller`s good and having multi-dimensional payoffs. This distinction induces a necessarily more complicated construction of the over-demanded sets than the constructions of these sets for the other assignment games. For this approach, our mechanism yields the buyer-optimal competitive equilibrium payoff, which equals the buyer-optimal stable payoff. The symmetry of the model allows to getting the seller-optimal stable payoff and the seller-optimal competitive equilibrium payoff can then be also derived.