184 resultados para gridding accuracy
Resumo:
Background and Study Aim: Evaluation of sport skills test can be very useful tool for coach practice. The aim of the present paper was: (a) to evaluate the reliability and accuracy of the Specific Physical Fitness Tests (SPFT) (b) to review the results of karate athletes who represent different weight categories, and who are at different stages of schooling; (c) to establish grading criteria of physical fitness preparation. Material/Methods: The reseach was conducted among 219 Kyokushin karate players, whose profiles were presented as (chi) over bar +/- SD and their main characteristics were the following: age 26.8 +/- 4.67 (19-39) years, body mass 75.2 +/- 8.35 (50-97) kg and body height 176.4 +/- 5.67 (160-196) cm. The value of the BMI amounted to 24.1 +/- 2.17 (17.9-29.4) kg/m(2). All the subjects of the research had training experience of 10.5 +/- 3.71 (4-20) years and their degree of proficiency ranged from 4(th) kyu to 3(rd) dan. The physical fitness trials proposed by Story (1989) included: hip turning speed, speed punches, flexibility, rapid kicks, agility, and evasion actions. It was supplemented by a test of local strength endurance, composing a battery of the SPFT, which was implemented by first of the authors between 1991 and 2006. Results: SPFT is characterized by high reliability and it can be used to diagnose the physical fitness preparation and monitor the individual results of training. It discriminates accurately competitors with different sports level and it is characterized by very high accuracy, it is correlated with the test results of motor general physical fitness abilities and coordination abilities as well as it is connected with the somatic build of the athlete. The performance classification table was developed on the basis of our research. Discussion: Results obtained in SPFT were shortly discussed. Conclusions: The collected results of our research allowed us to come to, the conclusion: The table can be applied not only to assess karate fighters, but also adepts in taekwondo, kick-boxing, ju-jitsu, hapkido or other mixed martial arts.
Resumo:
We examined effects of attentional focus on swimming speed. Participants` task was to swim one length of a pool (16 m) using the front crawl stroke. In Experiment 1, intermediate swimmers were given attentional focus instructions related to the crawl arm stroke or the leg kick, respectively. Participants were instructed to focus on ""pulling your hands back"" or ""pushing the instep down"" (internal focus), or on ""pushing the water back/down"" (external focus), respectively. Swim times were significantly shorter with an external focus. In Experiment 2, a control condition was included. Times were significantly faster in the external focus compared with both the internal focus and control conditions. These findings have implications for enhancing performance in swimming.
Resumo:
This study analyzed inter-individual variability of the temporal structure applied in basketball throwing. Ten experienced male athletes in basketball throwing were filmed and a number of kinematic movement parameters analyzed. A biomechanical model provided the relative timing of the shoulder, elbow and wrist joint movements. Inter-individual variability was analyzed using sequencing and relative timing of tem phases of the throw. To compare the variability of the movement phases between subjects a discriminant analysis and an ANOVA were applied. The Tukey test was applied to determine where differences occurred. The significance level was p = 0.05. Inter-individual variability was explained by three concomitant factors: (a) a precision control strategy, (b) a velocity control strategy and (c) intrinsic characteristics of the subjects. Therefore, despite the fact that some actions are common to the basketball throwing pattern each performed demonstrated particular and individual characteristics.
Resumo:
Creatine (CR) supplementation is commonly used by athletes. However, its effects on renal function remain controversial. The aim of this study was to evaluate the effects of creatine supplementation on renal function in healthy sedentary males (18-35 years old) submitted to exercise training. A randomized, double-blind, placebo-controlled trial was performed. Subjects (n = 18) were randomly allocated to receive treatment with either creatine (CR) (similar to 10 g day(-1) over 3 months) or placebo (PL) (dextrose). All subjects undertook moderate intensity aerobic training, in three 40-min sessions per week, during 3 months. Serum creatinine, serum and urinary sodium and potassium were determined at baseline and at the end of the study. Cystatin C was assessed prior to training (PRE), after 4 (POST 4) and 12 weeks (POST 12). Cystatin C levels (mg L-1) (PRE CR: 0.82 +/- 0.09; PL: 0.88 +/- 0.07 vs. POST 12 CR: 0.71 +/- 0.06; PL: 0.75 +/- 0.09, P = 0.0001) were decreased over time, suggesting an increase in glomerular filtration rate. Serum creatinine decreased with training in PL but was unchanged with training in CR. No significant differences were observed within or between groups in other parameters investigated. The decrease in cystatin C indicates that high-dose creatine supplementation over 3 months does not provoke any renal dysfunction in healthy males undergoing aerobic training. In addition, the results suggest that moderate aerobic training per se may improve renal function.
Resumo:
For percentage of body fat (%BF), there are no internationally accepted cutoffs. The primary function of body fat cutoffs should be to identify not only excessive body fatness, but also the increased risk of unhealthy outcomes, such as hypertension. The purpose of this study was to analyze the accuracy of different %BF and body mass index (BMI) cutoffs as screening measures for EBP in pediatric populations. It was a cross-sectional study with a sample of 358 male subjects from 8 to 18 years old. BP was measured by the oscilometric method, and body composition was measured by dual-energy X-ray absorptiometry (DXA). The accuracy of three reference tables used for body fat cutoffs was assessed. The three body fat reference tables were highly specific, but insensitive, for elevated BP screening. For elevated BP screening, all body fat cutoffs presented similar sensitivity (range=48.3-53.7%) and specificity (range=79.2-84.1%). The body fat cutoffs performed no better than BMI in screening of children and adolescents at risk of elevated BP (EBP). BMI seems a more attractive tool for this function, as it performed similarly and can be applied in large surveys and with lower costs. Hypertension Research (2011) 34, 963-967; doi:10.1038/hr.2011.61; published online 26 May 2011
Resumo:
Objective To evaluate drug interaction software programs and determine their accuracy in identifying drug-drug interactions that may occur in intensive care units. Setting The study was developed in Brazil. Method Drug interaction software programs were identified through a bibliographic search in PUBMED and in LILACS (database related to the health sciences published in Latin American and Caribbean countries). The programs` sensitivity, specificity, and positive and negative predictive values were determined to assess their accuracy in detecting drug-drug interactions. The accuracy of the software programs identified was determined using 100 clinically important interactions and 100 clinically unimportant ones. Stockley`s Drug Interactions 8th edition was employed as the gold standard in the identification of drug-drug interaction. Main outcome Sensitivity, specificity, positive and negative predictive values. Results The programs studied were: Drug Interaction Checker (DIC), Drug-Reax (DR), and Lexi-Interact (LI). DR displayed the highest sensitivity (0.88) and DIC showed the lowest (0.69). A close similarity was observed among the programs regarding specificity (0.88-0.92) and positive predictive values (0.88-0.89). The DIC had the lowest negative predictive value (0.75) and DR the highest (0.91). Conclusion The DR and LI programs displayed appropriate sensitivity and specificity for identifying drug-drug interactions of interest in intensive care units. Drug interaction software programs help pharmacists and health care teams in the prevention and recognition of drug-drug interactions and optimize safety and quality of care delivered in intensive care units.
Resumo:
Optical monitoring systems are necessary to manufacture multilayer thin-film optical filters with low tolerance on spectrum specification. Furthermore, to have better accuracy on the measurement of film thickness, direct monitoring is a must. Direct monitoring implies acquiring spectrum data from the optical component undergoing the film deposition itself, in real time. In making film depositions on surfaces of optical components, the high vacuum evaporator chamber is the most popular equipment. Inside the evaporator, at the top of the chamber, there is a metallic support with several holes where the optical components are assembled. This metallic support has rotary motion to promote film homogenization. To acquire a measurement of the spectrum of the film in deposition, it is necessary to pass a light beam through a glass witness undergoing the film deposition process, and collect a sample of the light beam using a spectrometer. As both the light beam and the light collector are stationary, a synchronization system is required to identify the moment at which the optical component passes through the light beam.
Resumo:
This work presents the study and development of a combined fault location scheme for three-terminal transmission lines using wavelet transforms (WTs). The methodology is based on the low- and high-frequency components of the transient signals originated from fault situations registered in the terminals of a system. By processing these signals and using the WT, it is possible to determine the time of travelling waves of voltages and/or currents from the fault point to the terminals, as well as estimate the fundamental frequency components. A new approach presents a reliable and accurate fault location scheme combining some different solutions. The main idea is to have a decision routine in order to select which method should be used in each situation presented to the algorithm. The combined algorithm was tested for different fault conditions by simulations using the ATP (Alternative Transients Program) software. The results obtained are promising and demonstrate a highly satisfactory degree of accuracy and reliability of the proposed method.
Resumo:
This work presents an automated system for the measurement of form errors of mechanical components using an industrial robot. A three-probe error separation technique was employed to allow decoupling between the measured form error and errors introduced by the robotic system. A mathematical model of the measuring system was developed to provide inspection results by means of the solution of a system of linear equations. A new self-calibration procedure, which employs redundant data from several runs, minimizes the influence of probes zero-adjustment on the final result. Experimental tests applied to the measurement of straightness errors of mechanical components were accomplished and demonstrated the effectiveness of the employed methodology. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A new two-dimensionally mapped infinite boundary element (IBE) is presented. The formulation is based on a triangular boundary element (BE) with linear shape functions instead of the quadrilateral IBEs usually found in the literature. The infinite solids analyzed are assumed to be three-dimensional, linear-elastic and isotropic, and Kelvin fundamental solutions are employed. One advantage of the proposed formulation over quadratic or higher order elements is that no additional degrees of freedom are added to the original BE mesh by the presence of the IBEs. Thus, the IBEs allow the mesh to be reduced without compromising the accuracy of the result. Two examples are presented, in which the numerical results show good agreement with authors using quadrilateral IBEs and analytical solutions. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The most ordinary finite element formulations for 3D frame analysis do not consider the warping of cross-sections as part of their kinematics. So the stiffness, regarding torsion, should be directly introduced by the user into the computational software and the bar is treated as it is working under no warping hypothesis. This approach does not give good results for general structural elements applied in engineering. Both displacement and stress calculation reveal sensible deficiencies for both linear and non-linear applications. For linear analysis, displacements can be corrected by assuming a stiffness that results in acceptable global displacements of the analyzed structure. However, the stress calculation will be far from reality. For nonlinear analysis the deficiencies are even worse. In the past forty years, some special structural matrix analysis and finite element formulations have been proposed in literature to include warping and the bending-torsion effects for 3D general frame analysis considering both linear and non-linear situations. In this work, using a kinematics improvement technique, the degree of freedom ""warping intensity"" is introduced following a new approach for 3D frame elements. This degree of freedom is associated with the warping basic mode, a geometric characteristic of the cross-section, It does not have a direct relation with the rate of twist rotation along the longitudinal axis, as in existent formulations. Moreover, a linear strain variation mode is provided for the geometric non-linear approach, for which complete 3D constitutive relation (Saint-Venant Kirchhoff) is adopted. The proposed technique allows the consideration of inhomogeneous cross-sections with any geometry. Various examples are shown to demonstrate the accuracy and applicability of the proposed formulation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In this paper a new boundary element method formulation for elastoplastic analysis of plates with geometrical nonlinearities is presented. The von Mises criterion with linear isotropic hardening is considered to evaluate the plastic zone. Large deflections are assumed but within the context of small strain. To derive the boundary integral equations the von Karman`s hypothesis is taken into account. An initial stress field is applied to correct the true stresses according to the adopted criterion. Isoparametric linear elements are used to approximate the boundary unknown values while triangular internal cells with linear shape function are adopted to evaluate the domain value influences. The nonlinear system of equations is solved by using an implicit scheme together with the consistent tangent operator derived along the paper. Numerical examples are presented to demonstrate the accuracy and the validity of the proposed formulation.
Resumo:
This paper presents a study on the compressive behavior of steel fiber-reinforced concrete. In this study, an analytical model for stress-strain curve for steel fiber-reinforced concrete is derived for concretes with strengths of 40 MPa and 60 MPa at the age of 28 days. Those concretes were reinforced with steel fibers with hooked ends 35 mm long and with aspect ratio of 65. The analytical model was compared with some experimental stress-strain curves and with some models reported in technical literature. Also, the accuracy of the proposed stress-strain curve was evaluated by comparison of the area under stress-strain curve. The results showed good agreement between analytical and experimental data and the benefits of the using of fibers in the compressive behavior of concrete.
Resumo:
This study presents a solid-like finite element formulation to solve geometric non-linear three-dimensional inhomogeneous frames. To achieve the desired representation, unconstrained vectors are used instead of the classic rigid director triad; as a consequence, the resulting formulation does not use finite rotation schemes. High order curved elements with any cross section are developed using a full three-dimensional constitutive elastic relation. Warping and variable thickness strain modes are introduced to avoid locking. The warping mode is solved numerically in FEM pre-processing computational code, which is coupled to the main program. The extra calculations are relatively small when the number of finite elements. with the same cross section, increases. The warping mode is based on a 2D free torsion (Saint-Venant) problem that considers inhomogeneous material. A scheme that automatically generates shape functions and its derivatives allow the use of any degree of approximation for the developed frame element. General examples are solved to check the objectivity, path independence, locking free behavior, generality and accuracy of the proposed formulation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This article presents a BEM formulation developed particularly for analysis of plates reinforced by rectangular beams. This is an extended version of a Previous paper that only took into account bending effects. The problem is now re-formulated to consider bending and membrane force effects. The effects of the reinforcements are taken into account by using a simplified scheme that requires application of ail initial stress field to locally correct the bending and stretching stiffness of the reinforcement regions. The domain integrals due to the presence of the reinforcements are then transformed to the reinforcement/plate interface. To reduce the number of degrees of freedom related to the presence of the reinforcement, the proposed model was simplified to consider only bending and stretching rigidities in the direction of the beams. The complete model can be recovered by applying all six internal force correctors, corresponding to six degrees of freedom per node. Examples are presented to confirm the accuracy of the formulation and to illustrate the level of simplification introduced by this strong reduction in the number of degrees of freedom. (C) 2008 Elsevier Ltd. All rights reserved.