140 resultados para Replicative stress
Resumo:
The hypothalamus-pituitary-adrenal axis (HPA) participates in mediating the response to stressful stimuli. Within the HPA, neurons in the medial parvocellular region of paraventricular nucleus (PVN) of the hypothalamus integrate excitatory and inhibitory signals triggering secretion of corticotropin-releasing hormone (CRH), the main secretagogue of adrenocorticotropic hormone (ACTH). Stressful situations alter CRH secretion as well as other hormones, including prolactin and oxytocin. Most inputs to the PVN are of local origin, half of which are GABAergic neurons, and both GABA-A and GABA-B receptors are present in the PVN. The objective of the present study was to investigate the role of GABA-A and GABA-B receptors in the PVN`s control of stress-induced corticosterone, oxytocin and prolactin secretion. Rats Were microinjected with saline or different doses (0.5, 5 and 50 pmol) of GABA-A (bicuculine) or GABA-B (phaclofen) antagonists in the PVN. Ten minutes later, they were subjected to a stressor (ether inhalation) and blood samples were collected 30 min before and 10, 30, 60, 90 and 120 min after the stressful stimulus to measure hormone levels by radioimmunoassay. Our results indicate that GABA acts in the PVN to inhibit stress-induced corticosterone secretion via both its receptor subtypes, especially GABA-B. In contrast, GABA in the PVN stimulates oxytocin secretion through GABA-B receptors and does not alter prolactin secretion. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Study objective: To compare the effects of ethinylestradiol (EE) and 17 beta-estradiol (E(2)) on nitric oxide (NO) production and protection against oxidative stress in human endothelial cell cultures. Design: Experimental study. Settings: Research laboratory. Material: Human ECV304 endothelial cell cultures. Intervention(s): The NO synthesis was determined by flow cytometry, and oxidative stress was determined by a cell viability assay, after exposure to hydrogen peroxide (H(2)O(2)) and stimulation of endothelial cells with EE at concentrations similar to those of a contraceptive containing 30 mu g EE. Main Outcome Measure(s): The effects of EE were compared with those of E(2) at concentrations similar to those occurring during the follicular phase. Result(s): Ethinylestradiol did not increase NO synthesis and did not protect cells against oxidative stress. The viability of the cells incubated with E(2) in combination with H(2)O(2) was greater than the viability obtained with H(2)O(2) only or with H(2)O(2) in combination with EE. The cells stimulated with E(2) presented a significant increase in NO production compared with control. Conclusion(s): In contrast to the effects of E(2), EE did not protect human ECV304 endothelial cells against oxidative stress and did not increase their production of NO. (Fertil Steril (R) 2010; 94: 1578-82. (C) 2010 by American Society for Reproductive Medicine.)
Resumo:
Cannabidiol (CBD), a Cannabis sativa constituent, may present a pharmacological profile similar to mood stabilizing drugs, in addition to anti-oxidative and neuroprotective properties. The present study aims to directly investigate the effects of CBD in an animal model of mania induced by D-amphetamine (D-AMPH). In the first model (reversal treatment), rats received saline or D-AMPH (2 mg/kg) once daily intraperitoneal (i.p.) for 14 days, and from the 8th to the 14th day, they were treated with saline or CBD (15, 30 or 60 mg/kg) i.p. twice a day. In the second model (prevention treatment), rats were pretreated with saline or CBD (15, 30, or 60 mg/kg) regime i.p. twice a day, and from the 8th to the 14th day, they also received saline or D-AMPH i.p. once daily. In the hippocampus CBD (15 mg/kg) reversed the D-AMPH-induced damage and increased (30 mg/kg) brain-derived neurotrophic factor (BDNF) expression. In the second experiment, CBD (30 or 60 mg/kg) prevented the D-AMPH-induced formation of carbonyl group in the prefrontal cortex. In the hippocampus and striatum the D-AMPH-induced damage was prevented by CBD (15, 30 or 60 mg/kg). At both treatments CBD did not present any effect against D-AMPH-induced hyperactivity. In conclusion, we could not observe effects on locomotion, but CBD protect against D-AMPH-induced oxidative protein damage and increased BDNF levels in the reversal model and these effects vary depending on the brain regions evaluated and doses of CBD administered.
Resumo:
Oxidative stress plays an important role in the development of cognitive impairment in sepsis. Here we assess the effects of acute and extended administration of cannabidiol (CBD) on oxidative stress parameters in peripheral organs and in the brain, cognitive impairment, and mortality in rats submitted to sepsis by cecal ligation and perforation (CLP). To this aim, male Wistar rats underwent either sham operation or CLP. Rats subjected to CLP were treated by intraperitoneal injection with ""basic support"" and CBD (at 2.5, 5, or 10 mg/kg once or daily for 9 days after CLP) or vehicle. Six hours after CLP (early times), the rats were killed and samples from lung, liver, kidney, heart, spleen, and brain (hippocampus, striatum, and cortex) were obtained and assayed for thiobarbituric acid reactive species (TBARS) formation and protein carbonyls. On the 10th day (late times), the rats were submitted to the inhibitory avoidance task. After the test, the animals were killed and samples from lung, liver, kidney, heart, spleen, and brain (hippocampus) were obtained and assayed for TBARS formation and protein carbonyls. The acute and extended administration of CBD at different doses reduced TBARS and carbonyl levels in some organs and had no effects in others, ameliorated cognitive impairment, and significantly reduced mortality in rats submitted to CLP. Our data provide the first experimental demonstration that CBD reduces the consequences of sepsis induced by CLP in rats, by decreasing oxidative stress in peripheral organs and in the brain, improving impaired cognitive function, and decreasing mortality. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The chronic mild stress (CMS) model has been used as an animal model of depression which induces anhedonic behavior in rodents. The present study was aimed to evaluate the behavioral and physiological effects of administration of P-carboline harmine in rats exposed to CMS Procedure. To this aim, after 40 days of exposure to CMS procedure, rats were treated with harmine (15 mg/kg/day) for 7 days. In this study, sweet food consumption, adrenal gland weight, adrenocorticotrophin hormone (ACTH) levels, and hippocampal brain-derived-neurotrophic factor (BDNF) protein levels were assessed. Our findings demonstrated that chronic stressful situations induced anhedonia, hypertrophy of adrenal gland weight, increase ACTH circulating levels in rats and increase BDNF protein levels. Interestingly, treatment with harmine reversed anhedonia, the increase of adrenal gland weight, normalized ACTH circulating levels and BDNF protein levels. Finally, these findings further support the hypothesis that harmine could be a new pharmacological tool for the treatment of depression. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Background and purpose: Calendula officinalis flowers have long been employed time in folk therapy, and more than 35 properties have been attributed to decoctions and tinctures from the flowers. The main uses are as remedies for burns (including sunburns), bruises and cutaneous and internal inflammatory diseases of several origins. The recommended doses are a function both of the type and severity of the condition to be treated and the individual condition of each patient. Therefore, the present study investigated the potential use of Calendula officinalis extract to prevent UV irradiation-induced oxidative stress in skin. Methods: Firstly, the physico-chemical composition of marigold extract(ME) (hydroalcoholic extract)was assessed and the in vitro antioxidant efficacy was determined using different methodologies. Secondly, the cytotoxicity was evaluated in L929 and HepG2 cells with the MTT assay. Finally, the in vivo protective effect of ME against UVB-induced oxidative stress in the skin of hairless mice was evaluated by determining reduced glutathione (GSH) levels and monitoring the secretion/activity of metalloproteinases. Results and conclusions: The polyphenol, flavonoid, rutin and narcissin contents found in ME were 28.6 mg/g, 18.8 mg/g, 1.6 mg/g and 12.2 mg/g, respectively and evaluation of the in vitro antioxidant activity demonstrated a dose-dependent effect of ME against different radicals. Cytoxicity experiments demonstrated that ME was not cytotoxic for L929 and HepG2 cells at concentrations less than or equal to of 15 mg/mL However, concentrations greater than or equal to 30 mg/mL, toxic effects were observed. Finally, oral treatment of hairless mice with 150 and 300 mg/kg of ME maintained GSH levels close to non-irradiated control mice. In addition, this extract affects the activity/secretion of matrix metalloproteinases 2 and 9 (MMP-2 and -9) stimulated by exposure to UVB irradiation. However, additional studies are required to have a complete understanding of the protective effects of ME for skin. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Introduction: Inhibition of matrix metalloproteinases (MMPs) improves the hemodynamics during acute pulmonary embolism (APE) and oxidative stress upregulates MMPs. We compared the effects of different NO-cGMP pathway activators on APE-induced increases in MMPs. Materials and Methods: Hemodynamic and biochemical evaluations were performed in non-embolized dogs treated with saline (N = 5), and in microspheres embolized dogs receiving saline (n = 9), or nitrite (6.75 mu mol/kg i.v. over 15 min followed by 0.28 mu mol/kg/min; n = 5), or sildenafil (0.25 mg/kg; n = 5), or BAY 41-2272 (0.03, 0.1, 0.3, and 1 mg/kg/h; n = 5). Plasma thiobarbituric acid reactive substances (TBARS) concentrations were determined. Zymograms of plasma samples were performed, and in vitro antioxidant effects or inhibition of MMPs by these drugs were examined. Results: APE increased mean pulmonary artery pressure by similar to 25 mmHg. Nitrite, BAY 41-2272, or sildenafil reversed this increase by similar to 40% (P < 0.05). Similar effects were seen on the pulmonary vascular resistance. While both nitrite and sildenafil produced no systemic effects, the highest dose of BAY 41-2272 produced systemic hypotension (P<0.05). While nitrite and sildenafil blunted the increases in plasma pro-MMP-9 levels and TBARS (all P < 0.05), BAY 41-2272 produced no such effects. Nitrite and sildenafll produced in vitro antioxidant effects and inhibited MMPs only at high concentrations. BAY 41-2272 produced no such effects. Conclusions: Activation of the NO-cGMP pathway with nitrite or sildenafil, but not with BAY 41-2272, attenuates APE-induced oxidative stress and increased MMP-9 levels. These findings are consistent with the idea that NO-cGMP pathway activators with antioxidant effects prevent the release of MMP-9 during APE. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: The aim of this prospective study was to compare the efficacy of intermittent antegrade blood cardioplegia with or without n-acetylcysteine (NAC) in reducing myocardial oxidative stress and coronary endothelial activation. Methods: Twenty patients undergoing elective isolated coronary artery bypass graft surgery were randomly assigned to receive intermittent antegrade blood cardioplegia (32 degrees C-34 degrees C) with (NAC group) or without (control group) 300 mg of NAC. For these 2 groups we compared clinical outcome, hemodynamic evolution, systemic plasmatic levels of troponin I, and plasma concentrations of malondialdehyde (MDA) and soluble vascular adhesion molecule 1 (sVCAM-1) from coronary sinus blood samples. Results: Patient demographic characteristics and operative and postoperative data findings in both groups were similar. There was no hospital mortality. Comparing the plasma levels of MDA 10 min after the aortic cross-clamping and of sVCAM-1 30 min after the aortic cross-clamping period with the levels obtained before the aortic clamping period, we observed increases of both markers, but the increase was significant only in the control group (P=.039 and P=.064 for MDA; P=.004 and P=.064 for sVCAM- 1). In both groups there was a significant increase of the systemic serum levels of troponin I compared with the levels observed before cardiopulmonary bypass (P<.001), but the differences between the groups were not significant (P=.570). Conclusions: Our investigation showed that NAC as an additive to blood cardioplegia in patients undergoing on-pump coronary artery bypass graft surgery may reduce oxidative stress and the resultant coronary endothelial activation.
Resumo:
Chlorhexidine (CHX), widely used as antiseptic and therapeutic agent in medicine and dentistry, has a toxic effect both in vivo and in vitro. The intrinsic mechanism underlying CHX-induced cytotoxicity in eukaryotic cells is, however, still unknown. A recent study from our laboratory has suggested that CHX may induce death in cultured L929 fibroblasts via endoplasmic reticulum (ER) stress. This hypothesis was further tested by means of light and electron microscopy, quantification of apoptosis and necrosis by flow cytometry, fluorescence visualization of the cytoskeleton and endoplasmic reticulum, and evaluation of the expression of 78-kDa glucose-regulated protein 78 (Grp78), a marker of activation of the unfolded protein response (UPR) in cultured L929 fibroblasts. Our finding showing increased Grp 78 expression in CHX-treated cells and the results of flow cytometry, cytoskeleton and endoplasmic reticulum fluorescence visualization, and scanning and transmission electron microscopy allowed us to suggest that CHX elicits accumulation of proteins in the endoplasmic reticulum, which causes ER overload, resulting in ER stress and cell death either by necrosis or apoptosis. It must be pointed out, however, that this does not necessarily mean that ER stress is the only way that CHX kills L929 fibroblasts, but rather that ER stress is an important target or indicator of cell death induced by this drug. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The present study investigated the potential use of topical formulations containing marigold extract (ME) (Calendula officinalis extract) against ultraviolet (UV) B irradiation-induced skin damage. The physical and functional stabilities, as well as the skin penetration capacity, of the different topical formulations developed were evaluated. In addition, the in vivo capacity to prevent/treat the UVB irradiation-induced skin damage, in hairless mice, of the formulation with better skin penetration capacity was investigated. All of the formulations were physically and functionally stable. The gel formulation [Formulation 3 (F3)] was the most effective for the topical delivery of ME, which was detected as 0.21 mu g/cm(2) of narcissin and as 0.07 mu g/cm(2) of the rutin in the viable epidermis. This formulation was able to maintain glutathione reduced levels close to those of nonirradiated animals, but did not affect the gelatinase-9 and myeloperoxidase activities increased by exposure to UVB irradiation. In addition, F3 reduced the histological skin changes induced by UVB irradiation that appear as modifications of collagen fibrils. Therefore, the photoprotective effect in hairless mice achieved with the topical application of ME in gel formulation is most likely associated with a possible improvement in the collagen synthesis in the subepidermal connective tissue. (C) 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 100:2182-2193, 2011
Resumo:
The vascular manifestations associated with diabetes mellitus (DM) result from the dysfunction of several vascular physiology components mainly involving the endothelium, vascular smooth muscle and platelets. It is also known that hyperglycemia-induced oxidative stress plays a role in the development of this dysfunction. This review considers the basic physiology of the endothelium, especially related to the synthesis and function of nitric oxide. We also discuss the pathophysiology of vascular disease associated with DM. This includes the role of hyperglycemia in the induction of oxidative stress and the role of advanced glycation end-products. We also consider therapeutic strategies.
Resumo:
Bovine leukemia virus (BLV) is among the most widespread livestock pathogens in many countries. Despite advances in understanding the pathogenesis of this disease, little is known about the involvement of oxidative stress. Therefore, this study examined the antioxidant status and the markers of oxidative stress in BLV-infected dairy cows. BLV infection was associated with an increase in triacylglycerol levels, a decrease in glutathione peroxidase (GSH-Px) activity and a tendency toward lower superoxide dismutase activity in the infected animals. No significant difference was observed in other markers of oxidative stress (i.e., conjugated dienes, hydroperoxides and malondialdehyde) in the infected animals compared to controls. A novel method for the analysis of oxidative stress, Z-scan based on the measurement of the mean-value of 9 in low density lipoprotein indicated that the infected animals had low-density lipoprotein particles that were slightly less modified than those from the healthy group. Thus, we conclude that BLV infection is associated with a selective decrease in GSH-Px activity without any alteration in the common plasma markers of oxidative stress. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Studies on environmental consequences of stress on animal production have grown substantially in the last few years for economic and animal welfare reasons. Physiological, hormonal, and immunological deficits as well as increases in animals` susceptibility to diseases have been reported after different stressors in broiler chickens. The aim of the current experiment is to describe the effects of 2 different heat stressors (31 +/- 1 and 36 +/- 1 degrees C/10 h per d) applied to broiler chickens from d 35 to 42 of life on the corticosterone serum levels, performance parameters, intestinal histology, and peritoneal macrophage activity, correlating and discussing the obtained data under a neuroimmune perspective. In our study, we demonstrated that heat stress (31 +/- 1 and 36 +/- 1 degrees C) increased the corticosterone serum levels and decreased BW gain and food intake. Only chickens submitted to 36 +/- 1 degrees C, however, presented a decrease in feed conversion and increased mortality. We also showed a decrease of bursa of Fabricius (31 +/- 1 and 36 +/- 1 degrees C), thymus (36 +/- 1 degrees C), and spleen (36 +/- 1 degrees C) relative weights and of macrophage basal (31 +/- 1 and 36 +/- 1 degrees C) and Staphylococcus aureus-induced oxidative burst (31 +/- 1 degrees C). Finally, mild multifocal acute enteritis characterized by an increased presence of lymphocytes and plasmocytes within the jejunum`s lamina propria was also observed. The stress-induced hypothalamic-pituitary-adrenal axis activation was taken as responsible for the negative effects observed on the chickens` performance and immune function and also the changes of the intestinal mucosa. The present obtained data corroborate with others in the field of neuroimmunomodulation and open new avenues for the improvement of broiler chicken welfare and production performance.
Resumo:
It was hypothesized the lower fertility of repeat-breeder (RB) Holstein cows is associated with oocyte quality and this negative effect is enhanced during summer heat stress (HS). During the summer and the winter, heifers (H; n = 36 and 34, respectively), peak-lactation (PL; n = 37 and 32, respectively), and RB (n = 36 and 31, respectively) Holstein cows were subjected to ovum retrieval to assess oocyte recovery, in vitro embryonic developmental rates, and blastocyst quality [terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells and total cell number]. The environmental temperature and humidity, respiration rate, and cutaneous and rectal temperatures were recorded in both seasons. The summer HS increased the respiration rate and the rectal temperature of PL and RB cows, and increased the cutaneous temperature and lowered the in vitro embryo production of Holstein cows and heifers. Although cleavage rate was similar among groups [H = 51.7% +/- 4.5 (n = 375), PL = 37.9% +/- 5.1 (n = 390), RB = 41.9% +/- 4.5 (n = 666)], blastocyst rate was compromised by HS, especially in RB cows [H = 30.3% +/- 4.8 (n = 244) vs. 23.3% +/- 6.4 (n = 150), PL = 22.0% +/- 4.7 (n = 191) vs. 14.6% +/- 7.6 (n = 103), RB = 22.5% +/- 5.4 (n = 413) vs. 7.9% +/- 4.3 (n = 177)]. Moreover, the fragmentation rate of RB blastocysts was enhanced during the summer, compared with winter [4.9% +/- 0.7 (n = 14) vs. 2.2% +/- 0.2 (n = 78)] and other groups [H = 2.5% +/- 0.7 (n = 13), and PL = 2.7% +/- 0.6 (n = 14)] suggesting that the association of RB fertility problems and summer HS may potentially impair oocyte quality. Our findings provide evidence of a greater sensitivity of RB oocytes to summer HS.
Resumo:
Animals inheriting the slick hair gene have a short, sleek, and sometimes glossy coat. The objective of the present study was to determine whether slick-haired Holstein cows regulate body temperature more effectively than wild-type Holstein cows when exposed to an acute increase in heat stress. Lactating slick cows (n = 10) and wild-type cows (n = 10) were placed for 10 h in an indoor environment with a solid roof, fans, and evaporative cooling or in an outdoor environment with shade cloth and no fans or evaporative cooling. Cows were exposed to both environments in a single reversal design. Vaginal temperature, respiration rate, surface temperature, and sweating rate were measured at 1200, 1500, 1800, and 2100 h (replicate 1) or 1200 and 1500 h (replicate 2), and blood samples were collected for plasma cortisol concentration. Cows in the outdoor environment had higher vaginal and surface temperatures, respiration rates, and sweating rates than cows in the indoor environment. In both environments, slick-haired cows had lower vaginal temperatures (indoor: 39.0 vs. 39.4 degrees C; outdoor 39.6 vs. 40.2 degrees C; SEM = 0.07) and respiration rate (indoor: 67 vs. 79 breaths/min; outdoor 97 vs. 107 breaths/min; SEM = 5.5) than wild-type cows and greater sweating rates in unclipped areas of skin (indoor: 57 vs. 43 g.h(-1)/m(2); outdoor 82 vs. 61 g.h(-1)/m(2); SEM = 8). Clipping the hair at the site of sweating measurement eliminated the difference between slick-haired and wild-type cows. Results indicate that slick-haired Holstein cows can regulate body temperature more effectively than wild-type cows during heat stress. One reason slick-haired animals are better able to regulate body temperature is increased sweating rate.