168 resultados para Impedance cytometry
Resumo:
BACKGROUND: Retention of airway secretions is a common and serious problem in ventilated patients. Treating or avoiding secretion retention with mucus thinning, patient-positioning, airway suctioning, or chest or airway vibration or percussion may provide short-term benefit. METHODS: In a series of laboratory experiments with a test-lung system we examined the role of ventilator settings and lung-impedance on secretion retention and expulsion. Known quantities of a synthetic dye-stained mucus simulant with clinically relevant properties were injected into a transparent tube the diameter of an adult trachea and exposed to various mechanical-ventilation conditions. Mucus-simulant movement was measured with a photodensitometric technique and examined with image-analysis software. We tested 2 mucus-simulant viscosities and various peak flows, inspiratory/ expiratory flow ratios, intrinsic positive end-expiratory pressures, ventilation waveforms, and impedance values. RESULTS: Ventilator settings that produced flow bias had a major effect on mucus movement. Expiratory How bias associated with intrinsic positive end-expiratory pressure generated by elevated minute ventilation moved mucus toward the airway opening, whereas intrinsic positive end-expiratory pressure generated by increased airway resistance moved the mucus toward the lungs. Inter-lung transfer of mucus simulant occurred rapidly across the ""carinal divider"" between interconnected test lungs set to radically different compliances; the mucus moved out of the low-compliance lung and into the high-compliance lung. CONCLUSIONS: The movement of mucus simulant was influenced by the ventilation pattern and lung impedance. Flow bias obtained with ventilator settings may clear or embed mucus during mechanical ventilation.
Resumo:
Background Obesity is related to a higher rate of infections and some types of cancer. Here we analyzed the impact of obesity and weight loss induced by Roux-en-Y gastric bypass (RYGB) on immunological parameters, i.e., cytokine productions and natural killer cell function. Methods We analyzed 28 morbidly obese patients before and 6 months after RYGB. Biochemical parameters were analyzed in plasma. The percent of natural killer (NK) cells, their cytotoxicity, and the production of cytokines by peripheral blood mononuclear cells were analyzed. The percent of NK cells was determined by flow cytometry and cytokine production determined by enzyme-linked immunosorbent assay. NK cytotoxicity was determined by the lactate dehydrogenase release assay. Results The weight loss 6 months following surgery was 35.3 +/- 4.5 kg. RYGB also improves biochemical parameters. No significant difference was found in the percent of NK cells after surgery. We found an increase in the production of interferon-gamma, interleukin (IL)-12 and IL-18, but not in IL-2, 6 months after RYGB. Cytotoxic activity of NK cells was significantly enhanced 6 months after RYGB [17.1 +/- 14.7% before RYGB vs 51.8 +/- 11.3% at 6 months after, at 40: 1 effector to target cell ratio; p<0.001]. We observed significant post-surgical improvement in the cytotoxic activity curve in 22 out of 28 patients (78.6%), irrespective of the target to effector cell ratio. Conclusions The weight loss induced by RYGB modifies the production of cytokines related with NK cell function and improves its activity.
Resumo:
Stem cells (SC) are potential therapeutic tools in the treatment of chronic renal diseases. Number and engraftment of SC in the injured sites are important for possible differentiation into renal cells and paracrine effect. The aim of this study was to analyze the effect of subcapsular injection of mesenchymal stem cells (MSC) in the 5/6 nephrectomy model (5/6 Nx). MSC obtained from Wistar rats were isolated by their capacity to adhere to plastic surfaces, characterized by flow cytometry, and analyzed by their differentiation potential into osteoblasts. MSC (2 X 105) were injected into the subcapsule of the remnant kidney of male Wistar rats, and were followed for 15 or 30 days. 5/6 Nx rats showed significant hypertension at 15 and 30 days, which was reduced by MSC at 30 days. Increased albuminuria and serum creatinine at 15 and 30 days in 5/6 Nx rats were also reduced by subcapsular injection of MSC. We also observed a significant reduction of glomerulosclerosis index 30 days after injection of MSC. 4-6 diamidino-2-phenylindole dihydrochloride (DAPI)-stained MSC showed a migration of these cells into renal parenchyma 5, 15, and 30 days after subcapsular injection. In conclusion, our data demonstrated that subcapsular injection of MSC in 5/6 Nx rats is associated with renoprotective effects. These results suggest that locally implanted MSC in the kidney allow a large number of cells to migrate into the injured sites and demonstrate that subcapsular injection represent an effective route for MSC delivery.
Resumo:
P>Human immunodeficiency virus (HIV)-1 protease is a known target of CD8+ T cell responses, but it is the only HIV-1 protein in which no fully characterized HIV-1 protease CD4 epitopes have been identified to date. We investigated the recognition of HIV-1 protease by CD4+ T cells from 75 HIV-1-infected, protease inhibitor (PI)-treated patients, using the 5,6-carboxyfluorescein diacetate succinimidyl ester-based proliferation assay. In order to identify putative promiscuous CD4+ T cell epitopes, we used the TEPITOPE algorithm to scan the sequence of the HXB2 HIV-1 protease. Protease regions 4-23, 45-64 and 73-95 were identified; 32 sequence variants of the mentioned regions, encoding frequent PI-induced mutations and polymorphisms, were also tested. On average, each peptide bound to five of 15 tested common human leucocyte antigen D-related (HLA-DR) molecules. More than 80% of the patients displayed CD4+ as well as CD8+ T cell recognition of at least one of the protease peptides. All 35 peptides were recognized. The response was not associated with particular HLA-DR or -DQ alleles. Our results thus indicate that protease is a frequent target of CD4+ along with CD8+ proliferative T cell responses by the majority of HIV-1-infected patients under PI therapy. The frequent finding of matching CD4+ and CD8+ T cell responses to the same peptides may indicate that CD4+ T cells provide cognate T cell help for the maintenance of long-living protease-specific functional CD8+ T cells.
Resumo:
Sepsis induces a systemic inflammatory response leading to tissue damage and cell death. LPS tolerance affects inflammatory response. To comprehend potential new mechanisms of immune regulation in endotoxemia, we examined macrophage mRNA expression by macroarray affected by LPS tolerance. LPS tolerance was induced with subcutaneous administration of 1 mg/kg/day of LPS over 5 days. Macrophages were isolated from the spleen and the expression of 1200 genes was quantitatively analyzed by the macroarray technique. The tolerant group displayed relevant changes in the expression of 84 mRNA when compared to naive mice. A functional group of genes related to cell death regulation was identified. PARP-1, caspase 3, FASL and TRAIL genes were confirmed by RT-PCR to present lower expression in tolerant mice. In addition, reduced expression of the pro-inflammatory genes TNF-alpha and IFN-gamma in the tolerant group was demonstrated. Following this, animals were challenged with polymicrobial sepsis. Flow cytometry analysis showed reduced necrosis and apoptosis in macrophages from the tolerant group compared to the naive group. Finally, a survival study showed a significant reduction in mortality in the tolerant group. Thus, in the current study we provide evidence for the selective reprogramming of the gene expression of cell death pathways during LPS tolerance and link these changes to protection from cell death and enhanced survival rates. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Two humanized monoclonal antibody constructs bearing the same variable regions of an anti-CD3 monoclonal antibody, whole IgG and FvFc, were expressed in CHO cells. Random and site-specific integration were used resulting in similar expression levels. The transfectants were selected with appropriate selection agent, and the surviving cells were plated in semi-solid medium for capture with FITC-conjugated anti-human IG antibody and picked with the robotic ClonePix FL. Conditioned media from selected clones were purified by affinity chromatography and characterized by SDS-PAGE, Western-blot, SEC-HPLC, and isoelectric focusing. Binding to the target present in healthy human mononuclear cells was assessed by flow cytometry, as well as by competition between the two constructs and the original murine monoclonal antibody. The humanized constructs were not able to dislodge the murine antibody while the murine anti-CD3 antibody could dislodge around 20% of the FvFc or IgG humanized versions. Further in vitro and in vivo pre-clinical analyses will be carried out to verify the ability of the humanized versions to demonstrate the immunoregulatory profile required for a humanized anti-CD3 monoclonal antibody.
Resumo:
Introduction: Pulmonary arterial hypertension (PAH) is frequently associated with thrombotic events, particularly involving the pulmonary microcirculation at sites of vascular injury. We therefore decided to analyse protease-activated receptor 1 (PAR1), a key element in the activation of human platelets by thrombin, in PAH patients in stable clinical condition. Methods: Using flow cytometry, we analyzed platelet PAR1 density, PAR1-mediated exposure of P-selectin and the formation of platelet-leukocyte aggregates in 30 PAH patients aged 11 to 78 years (median 50.5 years). The control group consisted of 25 healthy subjects with the same age range as patients. Results: In patients, total platelet PAR1 density and uncleaved PAR1 density correlated negatively with platelet count (r(2) = 0.33 and r(2) = 0.34 respectively, p < 0.0015). In patients with a low platelet count (<150 x 10(9) platelets/L), both densities were increased relative to controls (82% and 33% respectively, p < 0.05). Thrombin peptide-induced platelet exposure of P-selectin was directly related to total and uncleaved PAR1 density (respectively, r(2) = 0.33 and r(2) = 0.29, p < 0.0025) and increased in subjects with low platelet count (46% versus those with normal platelet count, p < 0.05). Patients with low platelet count had decreased in vitro thrombin-induced formation of platelet-leukocyte aggregates (57% decrease versus controls, p < 0.05). Conclusions: There seems to be a subpopulation of PAH patients with increased propensity to thrombotic events as suggested by increased platelet PAR1 expression and PAR-mediated surface exposure of P-selectin associated with decreased platelet count. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Adherent umbilical cord blood stromal cells (AUCBSCs) are multipotent cells with differentiation capacities. Therefore, these cells have been investigated for their potential in cell-based therapies. Quantum Dots (QDs) are an alternative to organic dyes and fluorescent proteins because of their long-term photostability. In this study we determined the effects of the cell passage on AUCBSCs morphology, phenotype, and differentiation potential. QDs labeled AUCBSCs in the fourth cell passage were differentiated in the three mesodermal lineages and were evaluated using cytochemical methods and transmission electron microscopy (TEM). Gene and protein expression of the AUCBSCs immunophenotypic markers were also evaluated in the labeled cells by real-time quantitative PCR and flow cytometry. In this study we were able to define the best cellular passage to work with AUCBSCs and we also demonstrated that the use of fluorescent QDs can be an efficient nano-biotechnological tool in differentiation studies because labeled cells do not have their characteristics compromised.
Resumo:
alpha(5)beta(1) integrin from both wild-type CHO cells (CHO-K1) and deficient in proteoglycan biosynthesis (CHO-745) is post-translationally modified by glycosaminoglycan chains. We demonstrated this using [(35)S]sulfate metabolic labeling of the cells, enzymatic degradation, immunoprecipitation reaction with monoclonal antibody, fluorescence microscopy, and flow cytometry. The alpha(5)beta(1) integrin heterodimer is a hybrid proteoglycan containing both chondroitin and heparan sulfate chains. Xyloside inhibition of sulfate incorporation into alpha(5)beta(1) integrin also supports that integrin is a proteoglycan. Also. cells grown with xyloside adhered on fibronectin with no alteration in alpha(5)beta(1) integrin expression. However, haptotactic motility on fibronectin declined in cells grown with xyloside or chlorate as compared with controls. Thus, alpha(5)beta(1) integrin is a proteoglycan and the glycosaminoglycan chains of the integrin influence cell motility on fibronectin. Similar glycosylation of alpha(5)beta(1) integrin was observed in other normal and malignant cells, suggesting that this modification is conserved and important in the function of this integrin. Therefore, these glycosaminoglycan chains of alpha(5)beta(1) integrin are involved in cellular migration on fibronectin.
Resumo:
Superparamagnetic iron oxide nanoparticles (SPIONs) are applied in stem cell labeling because of their high magnetic susceptibility as compared with ordinary paramagnetic species, their low toxicity, and their ease of magnetic manipulation. The present work is the study of CD133(+) stem cell labeling by SPIONs coupled to a specific antibody (AC133), resulting in the antigenic labeling of the CD133+ stem cell, and a method was developed for the quantification of the SPION content per cell, necessary for molecular imaging optimization. Flow cytometry analysis established the efficiency of the selection process and helped determine that the CD133 cells selected by chromatographic affinity express the transmembrane glycoprotein CD133. The presence of antibodies coupled to the SPION, expressed in the cell membrane, was observed by transmission electron microscopy. Quantification of the SPION concentration in the marked cells using the ferromagnetic resonance technique resulted in a value of 1.70 x 10 (13) mol iron (9.5 pg) or 7.0 x 10 (6) nanoparticles per cell ( the measurement was carried out in a volume of 2 mu L containing about 6.16 x 10 5 pg iron, equivalent to 4.5 x 10 (11) SPIONs). (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Objectives: Questions about reliability of bioimpedance analysis (BIA) in morbidly obese subjects have curtailed its use in this setting, but metabolic implications might reignite the debate. In a prospective study, it was aimed to analyze anthropometric and clinical associations. Methods: Bariatric candidates (n = 94) with or without metabolic syndrome were consecutively investigated. Age was 34.9 +/- 10.4 years (68.1% females), and BMI was 40.8 +/- 4.6 kg m(-2). Methods included single-frequency BIA, anthropometrics, inflammatory indices, and general biochemical profile. Results: Body composition results (water, fat) in females, but not in males, were entirely consistent with the literature. In both genders good association was observed with anthropometrics (BMI, waist circumference), inflammatory indices (ferritin, C-reactive protein) and general biochemical variables. Anthropometric measurements also displayed comparable associations. Multivariate tests including the two sets of measurements indicated no predominance of one method over the other, one complementing the other as metabolic marker. Conclusions: BIA limitations were mostly relevant for males, not females. Despite such discrepancies, good associations with anthropometry were demonstrated for both genders. Correlations with liver enzymes, and indices of protein, carbohydrate, and lipid metabolism could be demonstrated. BIA deserves more investigations concerning liver steatosis and ongoing inflammation, and it could contribute as well, synergistically with anthropometry, to monitor weight loss, body fat shifts, and metabolic risk. Am. J. Hum. Biol. 23: 420-422, 2011. (c) 2011 Wiley-Liss, Inc.
Resumo:
Background: Parenteral nutrition (PN) is used to control the nutritional state after severe intestinal resections. Whenever possible, enteral nutrition (EN) is used to promote intestinal rehabilitation and reduce PN dependency. Our aim is to verify whether EN + oral intake (01) in severe short bowel syndrome (SBS) surgical adult patients can maintain adequate nutritional status in the long term. Methods: This longitudinal retrospective study included 10 patients followed for 7 post-operative years. Body mass index (BMI), percentage of involuntary loss of usual body weight (UWL), free fat mass (FFM), and fat mass (FM) composition assessed by bioelectric impedance, and laboratory tests were evaluated at 6, 12, 24, 36, 48, 60, 72, and 84 months after surgery. Energy and protein offered in HPN and at long term by HEN+ oral intake (01), was evaluated at the same periods. The statistical model of generalized estimating equations with p <0,05 was used. Results: With long term EN + 01 there was a progressive increase in the UWL, a decrease in BMI, FFM, and FM (p < 0,05). PN weaning was possible in eight patients. Infection due to central venous catheter (CVC) contamination was the most common complication (1.2 episodes CVC/patient/year). There was an increase in energy and protein intake supply provided by HEN+OI (p <0.05). All patients survived for at least 2 years, seven for 5 years and six for 7 years of follow-up. Conclusions: In the long term SBS surgical adult patients fed with HEN+OI couldn`t maintain adequate nutritional status with loss of FM and FFM. (Nutr Hosp. 2011;26:834-842) DOI:10.3305/nh.2011.26.4.5153
Resumo:
Background & aims: Severe obesity imposes physical limitations to body composition assessment. Our aim was to compare body fat (BF) estimations of severely obese patients obtained by bioelectrical impedance (BIA) and air displacement plethysmography (ADP) for development of new equations for BF prediction. Methods: Severely obese subjects (83 female/36 mate, mean age = 41.6 +/- 11.6 years) had BF estimated by BIA and ADP. The agreement of the data was evaluated using Bland-Altman`s graphic and concordance correlation coefficient (CCC). A multivariate regression analysis was performed to develop and validate new predictive equations. Results: BF estimations from BIA (64.8 +/- 15 kg) and ADP (65.6 +/- 16.4 kg) did not differ (p > 0.05, with good accuracy, precision, and CCC), but the Bland- Altman graphic showed a wide Limit of agreement (- 10.4; 8.8). The standard BIA equation overestimated BF in women (-1.3 kg) and underestimated BF in men (5.6 kg; p < 0.05). Two BF new predictive equations were generated after BIA measurement, which predicted BF with higher accuracy, precision, CCC, and limits of agreement than the standard BIA equation. Conclusions: Standard BIA equations were inadequate for estimating BF in severely obese patients. Equations developed especially for this population provide more accurate BF assessment. (C) 2008 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Resumo:
Conclusion. The study shows that there are differences in the measurement of the action potentials with and without the stylet in the Nucleus Freedom Contour Advance that are higher in the apex than in the base of the cochlea. Objectives. To determine if there are differences in the intraoperative impedances and in the neural response telemetry threshold values in the Nucleus Freedom Contour Advance before and after stylet removal. Subjects and methods. This was a prospective clinical study. Intraoperative impedances and neural response telemetry in users of the Freedom Contour Advance Cochlear Implant were measured before and after stylet removal. Results. There was a significant reduction in the impedance values of an average 1.5 k Omega +/- 2.3 in common ground mode and 1.3 k Omega +/- 2.3 for all monopolar modes after the stylet removal (p < 0.001). When analyzing the apical, medium, and basal electrodes, there was a statistically significant reduction in the neural response thresholds after stylet removal only in the apical electrodes (p = 0.001).
Resumo:
Background Diet seems to represent, directly or indirectly, 35% of all cancer reports. In this study, the influence of dietary protein on the growth of melanoma B16F10 was evaluated through analyses of cell cycle phases and proliferative capacity. Methods Flow cytometry and argyrophilic nucleolar organizer regions (AgNORs) technique were applied in mice bearing B16F10 melanoma cells fed on different dietary proteins. All data were submitted to statistical analyses. Results The G0/G1 phase increased for the animal groups fed bovine collagen hydrolysate (BCH) or BCH-P1 + whey protein isolate (WPI), compared with mice receiving only WPI, for all dietary groups treated and nontreated with paclitaxel. Mice that received BCH + WPI treated with paclitaxel showed the highest percentage of apoptosis compared with WPI group. AgNORs, total nucleolar organizer regions (NORs)/cells and dot number/cell for all dietary protein groups nontreated with paclitaxel were higher than for the WPI. The only two dietary protein groups treated with paclitaxel that presented higher total NORs and dot number/cell than the WPI group were BCH + WPI and BCH-P1 + WPI. Conclusions A significantly lower proliferative capacity and larger number of cells in the G0/G1 phase were observed for the dietary protein groups combining the two collagen hydrolysates, BCH or BCH-P1 with WPI, treated with paclitaxel. Castro GA, Maria DA, Rodrigues CJ, Sgarbieri VC. Analysis of cell cycle phases and proliferative capacity in mice bearing melanoma maintained on different dietary proteins.