151 resultados para Density functional theory method
Resumo:
The introduction of high-permittivity gate dielectric materials into complementary metal oxide semiconductor technology has reopened the interest in Ge as a channel material mainly due to its high hole mobility. Since HfO(2) and ZrO(2) are two of the most promising dielectric candidates, it is important to investigate if Hf and Zr may diffuse into the Ge channel. Therefore, using ab initio density functional theory calculations, we have studied substitutional and interstitial Hf and Zr impurities in c-Ge, looking for neutral defects. We find that (i) substitutional Zr and Hf defects are energetically more favorable than interstitial defects; (ii) under oxygen-rich conditions, neither Zr nor Hf migration towards the channel is likely to occur; (iii) either under Hf- or Zr-rich conditions it is very likely, particularly for Zr, that defects will be incorporated in the channel.
Resumo:
The presence of certain kinds of defects at the edges of monohydrogenated zigzag graphene nanoribbons changes dramatically the charge transport properties inducing a spin-polarized conductance. Using an approach based on density functional theory and nonequilibrium Green`s function formalism to calculate the transmittance, we classify the defects in different classes depending on their distinct transport properties: (i) sigma-defects, which do not affect the transmittance close to the Fermi energy (E(F)); and (ii) pi-defects, which cause a spin polarization of the transmittance and that can be further divided into either electron or hole defects if the spin transport polarization results in larger transmittance for the up or down spin channel, respectively.
Resumo:
We investigate from first principles the electronic and transport properties of hybrid organic/silicon interfaces of relevance to molecular electronics. We focus on conjugated molecules bonded to hydrogenated Si through hydroxyl or thiol groups. The electronic structure of the systems is addressed within density functional theory, and the electron transport across the interface is directly evaluated within the Landauer approach. The microscopic effects of molecule-substrate bonding on the transport efficiency are explicitly analyzed, and the oxygen-bonded interface is identified as a candidate system when preferential hole transfer is needed.
Resumo:
Ab initio calculations based on the density functional theory (DFT) are used to investigate the electronic and optical properties of sillimanite. The geometrical parameters of the unit cell, which contain 32 atoms, have been fully optimized and are in good agreement with the experimental data. The electronic structure shows that sillimanite has an indirect band gap of 5.18 eV. The complex dielectric function and optical constants, such as extinction coefficient, refractive index, reflectivity and energy-loss spectrum, are calculated. The optical properties of sillimanite are discussed based on the band structure calculations. It is shown that the O-2p states and Al-3s, Si-3s states play the major role in optical transitions as initial and final states, respectively. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The electronic and optical properties of grossular garnet are investigated using density functional theory (DFT) within generalized gradient approximation (GGA). The calculated lattice parameters are in good agreement with the experiment data. The electronic structure shows that grossular has a direct band gap of 5.22 eV. The dielectric functions, reflective index, extinction coefficient, reflectivity and energy-loss spectrum are calculated. The optical properties of grossular are discussed based on the band structure calculations. The O 2p states and Si 3s play a major role in these optical transitions as initial and final states, respectively. The absorption spectrum is localized in the ultraviolet range between 30 and 250 nm. Finally, we concluded that pure grossular crystal does not absorb radiation in the visible range. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work we investigate the degenerate two-photon absorption spectrum of all-trans retinal ill ethanol employing the Z-scan technique with femtosecond pulses, The two-photon absorption (2PA) spectrum presents a monotonous increase as the excitation wavelength approaches the one-photon absorption band and it peak at 790 nm. We attribute the 2PA hand to the mixing of states (1)B(u)+-like and vertical bar S(1)>, which are strongly allowed by one- and two-photon, respectively. We modeled the 2PA spectrum by using the sum-over-states approach and obtained spectroscopic parameters of the electronic transitions to vertical bar S >, vertical bar S(2)> (""(1)Bu(+)""), vertical bar S(3)>, and vertical bar S(4)> singlet-excited states. The results were compared with theoretical predictions of one- and two-photon transition calculations using the response Functions formalism within the density functional theory framework with the aid of the CAM-B3LYP functional.
Resumo:
This work investigates the two-photon absorption spectrum of perylene tetracarboxylic derivatives using the white-light continuum Z-scan technique. Perylene derivatives present relatively high two-photon absorption cross-section, which makes them attractive for applications in photonics. Because of the spectral resolution of the white-light continuum Z-scan, we were able to observe a well defined structure in the two-photon absorption spectrum, composed by two distinct peaks. These peaks, as well as the resonant enhancement of the nonlinearity, were modeled using the sum-over-states approach considering a four-level energy diagram with two final two-photon states. The existence of such states was confirmed using the response function formalism within the DFT framework. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Periodic first-principles calculations based on density functional theory at the B3LYP level has been carried out to investigate the photoluminescence (PL) emission of BaZrO(3) assembled nanoparticles at room temperature. The defect created in the nanocrystals and their resultant electronic features lead to a diversification of electronic recombination within the BaZrO(3) band gap. Its optical phenomena are discussed in the light of photoluminescence emission at the green-yellow region around 570 nm. The theoretical model for displaced atoms and/or angular changes leads to the breaking of the local symmetry, which is based on the refined structure provided by Rietveld methodology. For each situation a band structure, charge mapping, and density of states were built and analyzed. X-ray diffraction (XRD) patterns, UV-vis measurements, and field emission scanning electron microscopy (FE-SEM) images are essential for a full evaluation of the crystal structure and morphology.
Resumo:
Langmuir-Blodgett (LB) films from diazobenzene Sudan III have been investigated using surface potential measurements as a function of number of layers and deposition pressures, with the surface potential data being related to molecular dipole moments obtained from theoretical electronic structure calculations. The surface potential increased with the number of layers for SIII LB films, and then tended to saturate. Results from density functional theory (DIFT) and UV-vis spectroscopy indicated that the increase is due to addition of layers with oriented molecular dipoles, with the saturation tendency being attributed to a decrease in the amount of material deposited in each layer. The surface potential increased with the surface pressure used for deposition, probably owing to a higher contribution from the vertical component of the dipole moment as a closer molecular packing, which is associated with decreasing conformational entropy, was reached. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The solvatochromism and other spectroscopic and photophysical characteristics of four azo disperse dyes, derived from 2-amino-5-nitrothiazole, were evaluated and interpreted with the aid of experimental data and quantum mechanical calculations. For the non-substituted compound two conformers, E and Z, were proposed for the isolated molecules, being the second one considerably less stable. The optimization of these structures in combination with a SCRF methodology (IEFPCM, Simulating the molecules in a continuum dielectric with characteristics of methanol), suggests that the Z form is not stable in solution. This same behaviour is expected for the substituted compounds, which is corroborated by experimental data presented in previous investigations [A.E.H. Machado, L.M. Rodrigues, S. Gupta, A.M.F. Oliveira-Campos, A.M.S. Silva, J. Mol. Struct. 738 (2005) 239-245]. For the substituted compounds, two forms derived from E conformer (A and R) are possible. Quantum mechanical data suggest for the isolated molecules, that the low energy absorption hand of the E conformers involve at least two close electronic states. having the low-lying excited state a (1)(n,pi*) nature, and being the S-2 state attributed to a (1)(pi,pi*) transition. The data also suggest a small energy gap between the absorption peaks of A and B, related to the easy conversion between these forms. For the structures optimized in combination with the applied SCRF methodology, an states inversion is observed for the Substituted compounds, with a considerable diminish of the energy gap between A and B absorption peaks. The electronic spectra of these compounds are quite sensitive to changes in the solvent polarity. The positive solvatochromism is more evident in aprotic solvents, probably due to the polarization induced by the solute. These compounds do not fluoresce at 298 K, but present a small but perceptible fluorescence at 77 K, which seems to be favoured by the nature of the group in the 2 `-position of the phenyl ring. Moreover, such compounds present expressive values for first hyperpolarizability, which implies in good non-linear optics (NLO) responses and photoswitching capability. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We study the properties of the lower bound on the exchange-correlation energy in two dimensions. First we review the derivation of the bound and show how it can be written in a simple density-functional form. This form allows an explicit determination of the prefactor of the bound and testing its tightness. Next we focus on finite two-dimensional systems and examine how their distance from the bound depends on the system geometry. The results for the high-density limit suggest that a finite system that comes as close as possible to the ultimate bound on the exchange-correlation energy has circular geometry and a weak confining potential with a negative curvature. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
The exchange energy of an arbitrary collinear-spin many-body system in an external magnetic field is a functional of the spin-resolved charge and current densities, E(x)[n(up arrow), n(down arrow), j(up arrow), j(down arrow)]. Within the framework of density-functional theory (DFT), we show that the dependence of this functional on the four densities can be fully reconstructed from either of two extreme limits: a fully polarized system or a completely unpolarized system. Reconstruction from the limit of an unpolarized system yields a generalization of the Oliver-Perdew spin scaling relations from spin-DFT to current-DFT. Reconstruction from the limit of a fully polarized system is used to derive the high-field form of the local-spin-density approximation to current-DFT and to magnetic-field DFT.
Resumo:
Universal properties of the Coulomb interaction energy apply to all many-electron systems. Bounds on the exchange-correlation energy, in particular, are important for the construction of improved density functionals. Here we investigate one such universal property-the Lieb-Oxford lower bound-for ionic and molecular systems. In recent work [J Chem Phys 127, 054106 (2007)], we observed that for atoms and electron liquids this bound may be substantially tightened. Calculations for a few ions and molecules suggested the same tendency, but were not conclusive due to the small number of systems considered. Here we extend that analysis to many different families of ions and molecules, and find that for these, too, the bound can be empirically tightened by a similar margin as for atoms and electron liquids. Tightening the Lieb-Oxford bound will have consequences for the performance of various approximate exchange-correlation functionals. (C) 2008 Wiley Periodicals Inc.
Resumo:
Charge density and magnetization density profiles of one-dimensional metals are investigated by two complementary many-body methods: numerically exact (Lanczos) diagonalization, and the Bethe-Ansatz local-density approximation with and without a simple self-interaction correction. Depending on the magnetization of the system, local approximations reproduce different Fourier components of the exact Friedel oscillations. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We study the influence of ferromagnetic and antiferromagnetic bond defects on the ground-state energy of antiferromagnetic spin chains. In the absence of translational invariance, the energy spectrum of the full Hamiltonian is obtained numerically, by an iterative modi. cation of the power algorithm. In parallel, approximate analytical energies are obtained from a local-bond approximation, proposed here. This approximation results in significant improvement upon the mean-field approximation, at negligible extra computational effort. (C) 2008 Published by Elsevier B.V.