107 resultados para Complexity.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nongravimetric acetyl bromide lignin (ABL) method was evaluated to quantify lignin concentration in a variety of plant materials. The traditional approach to lignin quantification required extraction of lignin with acidic dioxane and its isolation from each plant sample to construct a standard curve via spectrophotometric analysis. Lignin concentration was then measured in pre-extracted plant cell walls. However, this presented a methodological complexity because extraction and isolation procedures are lengthy and tedious, particularly if there are many samples involved. This work was targeted to simplify lignin quantification. Our hypothesis was that any lignin, regardless of its botanical origin, could be used to construct a standard curve for the purpose of determining lignin concentration in a variety of plants. To test our hypothesis, lignins were isolated from a range of diverse plants and, along with three commercial lignins, standard curves were built and compared among them. Slopes and intercepts derived from these standard curves were close enough to allow utilization of a mean extinction coefficient in the regression equation to estimate : lignin concentration in any plant, independent of its botanical origin. Lignin quantification by use of a common regression equation obviates the steps of lignin extraction, isolation, and standard curve construction, which substantially expedites the ABL method. Acetyl bromide lignin method is a fast, convenient analytical procedure that may routinely be used to quantify lignin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Finite element analysis (FEA) utilizing models with different levels of complexity are found in the literature to study the tendency to vertical root fracture caused by post intrusion (""wedge effect""). The objective of this investigation was to verify if some simplifications used in bi-dimensional FEA models are acceptable regarding the analysis of stresses caused by wedge effect. Three plane strain (PS) and two axisymmtric (Axi) models were studied. One PS model represented the apical third of the root entirely, in dentin (PS-nG). The other models included gutta-percha in the apical third, and differed regarding dentin-post relationship: bonded (PS-B and Axi-B) or nonbonded (PS-nB and Axi-nB). Mesh discretization and material properties were similar for all cases. Maximum principal stress (sigma(max)) was analyzed as a response to a 165 N longitudinal load. Stress magnitude and orientation varied widely (PS-nG: 10.3 MPa; PS-B: 0.8 MPa; PS-nB: 10.4 MPa; Axi-13: 0.2 MPa, Axi-nB: 10.8 MPa). Axi-nB was the only model where all (sigma(max) vectors at the apical third were perpendicular to the model plane. Therefore, it is adequate to demonstrate the tendency to vertical root fractures caused by wedge effect. Axi-13 showed only part of the (sigma(max) perpendicular to the model plane while PS models showed sigma(max) on the model plane. In these models, sigma(max) orientation did not represent a situation where vertical root fracture would occur due to wedge effect. Adhesion between post and dentin significantly reduced (c) 2007 Wiley Periodicals, Inc.