144 resultados para Chronically Hypoxic Rats
Resumo:
In addition to reducing blood pressure, hydralazine can reduce the production of inflammatory cytokines and reduce the expression of leukocyte adhesion molecules. Differences in leukocyte behavior and leukocyte adhesion molecule expression in spontaneously hypertensive rats (SHR) compared to normotensive rats have been reported. However, whether hydralazine can reduce leukocyte migration in vivo in hypertension and in normotension remains unknown. To address this question, male SHR and Wistar rats were treated for 15 days with hydralazine at a dose of similar to 3.5 mg/kg or similar to 14 mg/kg in their drinking water. The numbers of rollers and adherent and migrated cells were determined by direct vital microscopy, and blood pressure was assessed by tail plethysmography. In addition, following treatment with the higher dose, immunohistochemistry was used to measure the expression of intercellular adhesion molecule-1 (ICAM-1), P-selectin, and platelet-endothelial cell adhesion molecule-1 (PECAM-1) in endothelial cells, while flow cytometry was used to evaluate the expression of leukocyte CD18 and L-selectin. Hydralazine reduced leukocyte adherence and migration in SHR either at the higher, that reduced blood pressure levels, or lower dose, which did not reduce it. Reduced ICAM-1 expression might be involved in the reduced migration observed in SHR. In Wistar rats, only at the higher dose hydralazine reduced blood pressure levels and leukocyte migration. Reduced P-selectin expression might be involved. We therefore conclude that hydralazine reduces leukocyte migration by different mechanisms in SHR and Wistar rats, specifically by reducing ICAM-1 expression in the former and P-selectin expression in the latter. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Primary sensory afferent neurons modulate the hyperdynamic circulation in Cirrhotic rats with portal hypertension.The stomach of cirrhotic rats is prone to damage induced by ethanol, a phenomenon associated with reduced gastric hyperemic response to acid-back diffusion. The aim of this study was to examine the impact of ablation of capsaicin-sensitive neurons and the tachykinin NK(1) receptor antagonist A5330 on the susceptibility of the portal hypertensive gastric mucosa, to ethanol-induced injury and its effects on gastric cyclooxygenase (COX) and nitric oxide synthase (NOS) mRNA expression. Capsaicin was administered to neonatal, male, Wistar rats and the animals were allowed to grow. Cirrhosis was then induced by bile duct ligation in adult rats while controls had sham operation. Ethanol-induced gastric damage was assessed using ex vivo gastric chamber experiments. Gastric blood flow was measured as well as COX/NOS mRNA expression. Topical application of ethanol produced significant gastric damage in cirrhotic rats compared to controls, which was reversed in capsaicin- and A5330-treated animals. Mean arterial and portal pressure was normalized in capsaicin-treated cirrhotic rats. Capsaicin and A5330 administration restored gastric blood flow responses to topical application of ethanol followed by acid in cirrhotic rats. Differential COX and NOS mRNA expression was noted in bile duct ligated rats relative to controls. Capsaicin treatment significantly modified gastric eNOS/iNOS/COX-2 mRNA expression in cirrhotic rats. Capsaicin-sensitive neurons modulate the susceptibility of the portal hypertensive gastric mucosa to injury induced by ethanol via tachykinin NK(1) receptors and signalling of prostaglandin and NO production/release. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Caffeine and femproporex are psychostimulants drugs widely consumed in Brazil. Behavioral sensitization is defined as an augmentation in the behavioral effect of a psychostimulant upon re-administration. Repeated administration of a psychostimulant produces behavioral sensitization to that drug and cross-sensitization to other drugs. We investigated whether repeated administration of caffeine increases femproporex-induced locomotor activity in adolescent and adult rats. Forty-eight adolescent (postnatal day 27) and 32 adult (postnatal day 60) received i.p. injections of caffeine (CAF) (10.0 mg/kg) (adolescent N = 24; adult N = 16)) or saline (adolescent N = 24; adult N = 16) once daily for ten days. Three days following the last injection each group was subdivided and received a challenge injection of femproporex (2.0 mg/kg i.p) or saline. Locomotor activity was recorded for 1 hour in 5 - minute intervals. Our results showed that repeated injections of caffeine increased femproporex - induced locomotor activity in adult and adolescent rats.
Resumo:
Amlodipine, an antihypertensive drug, and diclofenac, an anti inflammatory drug, may generally be combined, particularly in elderly patients; therefore, the potential for their interaction is high. We aim to determine if amlodipine interferes with the antimigratory effect of diclofenac. For this, male spontaneously hypertensive rats (SHRs) were treated with either diclofenac (1 mg.kg(-1).d(-1), 15 d) alone or combined with amlodipine (10 mg.kg(-1).d(-1), 15 d). Leukocyte rolling, adherence, and migration were studied by intravital microscopy. Diclofenac did not change (180.0 +/- 2.3), whereas amlodipine combined (163.4 +/- 5.1) or not (156.3 +/- 4.3) with diclofienac reduced the blood pressure (BP) levels in SHR (183.1 +/- 4.4). Diclofenac and amlodipine reduced leukocyte adherence, migration, and ICAM-I expression, whereas only diclofenac reduced rolling leukocytes as well. Combined with amlodipine, the effect of the diclofenac was reduced. Neither treatment tested increased the venular shear rate or modified the venular diameters, number of circulating leukocytes, P-selectin, PECAM-1, L-selectin, or CD-18 expressions. No difference could be found in plasma concentrations of both drugs given alone or in association. In conclusion, amlodipine reduces leukocyte migration in SHR, reducing endothelial cell ICAM-1 expression. Amlodipine reduces the effect of the diclofenac, possibly by the same mechanism. A pharmacokinetic interaction as well as an effect on the other adhesion molecules tested could be discarded.
Resumo:
Background: Allergic lung inflammation is impaired in diabetic rats and is restored by insulin treatment. In the present study we investigated the effect of insulin on the signaling pathways triggered by allergic inflammation in the lung and the release of selected mediators. Methods: Diabetic male Wistar rats (alloxan, 42 mg/kg, i.v., 10 days) and matching controls were sensitized by s.c. injections of ovalbumin (OA) in aluminium hydroxide, 14 days before OA (1 mg/0.4 ml) or saline intratracheal challenge. A group of diabetic rats were treated with neutral protamine Hagedorn insulin (NPH, 4 IU, s.c.), 2 h before the OA challenge. Six hours after the challenge, bronchoalveolar lavage (BAL) was performed for mediator release and lung tissue was homogenized for Western blotting analysis of signaling pathways. Results: Relative to non-diabetic rats, the diabetic rats exhibited a significant reduction in OA-induced phosphorylation of the extracellular signal-regulated kinase (ERK, 59%), p38 (53%), protein kinase B (Akt, 46%), protein kinase C (PKC)-alpha (63%) and PKC-delta (38%) in lung homogenates following the antigen challenge. Activation of the NF-kappa B p65 subunit and phosphorylation of I kappa B alpha were almost suppressed in diabetic rats. Reduced expression of inducible nitric oxide synthase (iNOS, 32%) and cyclooxygenase-2 (COX-2, 46%) in the lung homogenates was also observed. The BAL concentration of prostaglandin (PG)-E(2), nitric oxide (NO) and interleukin (IL)-6 was reduced in diabetic rats (74%, 44% and 65%, respectively), whereas the cytokine-induced neutrophil chemoattractant (CINC)-2 concentration was not different from the control animals. Treatment of diabetic rats with insulin completely or partially restored all of these parameters. This protocol of insulin treatment only partially reduced the blood glucose levels. Conclusion: The data presented show that insulin regulates MAPK, PI3K, PKC and NF-kappa B pathways, the expression of the inducible enzymes iNOS and COX-2, and the levels of NO, PGE(2) and IL-6 in the early phase of allergic lung inflammation in diabetic rats. It is suggested that insulin is required for optimal transduction of the intracellular signals that follow allergic stimulation. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Diabetic patients have increased susceptibility to infection, which may be related to impaired inflammatory response observed in experimental models of diabetes, and restored by insulin treatment. The goal of this study was to investigate whether insulin regulates transcription of cytokines and intercellular adhesion molecule 1 (ICAM-1) via nuclear factor-kappa B (NF-kappa B) signaling pathway in Escherichia coli LIPS-induced lung inflammation. Diabetic male Wistar rats (alloxan, 42 mg/kg, iv., 10 days) and controls were instilled intratracheally with saline containing LPS (750 mu g/0.4 mL) or saline only. Some diabetic rats were given neutral protamine Hagedorn insulin (4 IU, s.c.) 2 h before LIPS. Analyses performed 6 h after LPS included: (a) lung and mesenteric lymph node IL-1 beta, TNF-alpha, IL-10, and ICAM-1 messenger RNA (mRNA) were quantified by real-time reverse transcriptase-polymerase chain reaction; (b) number of neutrophils in the bronchoalveolar lavage (BAL) fluid, and concentrations of IL-1 beta, TNF-alpha, and IL-10 in the BAL were determined by the enzyme-linked immunosorbent assay; and (c) activation of NF-kappa B p65 subunit and phosphorylation of I-kappa B alpha were quantified by Western blot analysis. Relative to controls, diabetic rats exhibited a reduction in lung and mesenteric lymph node IL-1 beta (40%), TNF-alpha (similar to 30%), and IL-10 (similar to 40%) mRNA levels and reduced concentrations of IL-1 beta (52%), TNF-alpha (62%), IL-10 (43%), and neutrophil counts (72%) in the BAL. Activation of NF-kappa B p65 subunit and phosphorylation of I-kappa B alpha were almost suppressed in diabetic rats. Treatment of diabetic rats with insulin completely restored mRNA and protein levels of these cytokines and potentiated lung ICAM-1 mRNA levels (30%) and number of neutrophils (72%) in the BAL. Activation of NF-kappa B p65 subunit and phosphorylation of I-kappa B alpha were partially restored by insulin treatment. In conclusion, data presented suggest that insulin regulates transcription of proinflammatory (IL-1 beta, TNF-alpha) and anti-inflammatory (IL-10) cytokines, and expression of ICAM-1 via the NF-kappa B signaling pathway.
Resumo:
It is well known that melatonin participates in the regulation of many important physiological functions such as sleep-wakefulness cycle, motor coordination and neural plasticity, and cognition. However, as there are contradictory results regarding the melatonin production diurnal profile under alcohol consumption, the aim of this paper was to study the phenomenology and mechanisms of the putative modifications on the daily profile of melatonin production in rats submitted to chronic alcohol intake. The present results show that rats receiving 10% ethanol in drinking water for 35 days display an altered daily profile of melatonin production, with a phase delay and a reduction in the nocturnal peak. This can be partially explained by a loss of the daily rhythm and the 25% reduction in tryptophan hydroxylase activity and, mainly, by a phase delay in arylalkylamine N-acetyltransferase gene expression and a 70% reduction in its peak activity. Upstream in the melatonin synthesis pathway, the results showed that noradrenergic signaling is impaired as well, with a decrease in beta 1 and alpha 1 adrenergic receptors` mRNA contents and in vitro sustained loss of noradrenergic-stimulated melatonin production by glands from alcohol-treated rats. Together, these results confirm the alterations in the daily melatonin profile of alcoholic rats and suggest the possible mechanisms for the observed melatonin synthesis modification.
Resumo:
Clinical and experimental evidences show that formaldehyde (FA) exposure has an irritant effect on the upper airways. As being an indoor and outdoor pollutant, FA is known to be a causal factor of occupational asthma. This study aimed to investigate the repercussion of FA exposure on the course of a lung allergic process triggered by an antigen unrelated to FA. For this purpose, male Wistar rats were subjected to FA inhalation for 3 consecutive days (1%, 90-min daily), subsequently sensitized with ovalbumin (OVA)-alum via the intraperitoneal route, and 2 weeks later challenged with aerosolized OVA. The OVA challenge in rats after FA inhalation (FA/OVA group) evoked a low-intensity lung inflammation as indicated by the reduced enumerated number of inflammatory cells in bronchoalveolar lavage as compared to FA-untreated allergic rats (OVA/OVA group). Treatment with FA also reduced the number of bone marrow cells and blood leukocytes in sensitized animals challenged with OVA, which suggests that the effects of FA had not been only localized to the airways. As indicated by passive cutaneous anaphylactic reaction, FA treatment did not impair the anti-OVA IgE synthesis, but reduced the magnitude of OVA challenge-induced mast cell degranulation. Moreover, FA treatment was associated to a diminished lung expression of PECAM-1 (platelet-endothelial cell adhesion molecule 1) in lung endothelial cells after OVA challenge and an exacerbated release of nitrites by BAL-cultured cells. Keeping in mind that rats subjected solely to either FA or OVA challenge were able to significantly increase the cell influx into lung, our study shows that FA inhalation triggers long-lasting effects that affect multiple mediator systems associated to OVA-induced allergic lung such as the reduction of mast cells activation, PECAM-1 expression and exacerbation of NO generation, thereby contributing to the decrease of cell recruitment after the OVA challenge. In conclusion, repeated expositions to air-borne FA may impair the lung cell recruitment after an allergic stimulus, thereby leading to a non-responsive condition against inflammatory stimuli likely those where mast cells are involved. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Disturbances in the regulation of cytosolic calcium (Ca(2+)) concentration play a key role in the vascular dysfunction associated with arterial hypertension. Stromal interaction molecules (STIMs) and Orai proteins represent a novel mechanism to control store-operated Ca(2+) entry. Although STIMs act as Ca(2+) sensors for the intracellular Ca(2+) stores, Orai is the putative pore-forming component of Ca(2+) release-activated Ca(2+) channels at the plasma membrane. We hypothesized that augmented activation of Ca(2+) release-activated Ca(2+)/Orai-1, through enhanced activity of STIM-1, plays a role in increased basal tonus and vascular reactivity in hypertensive animals. Endothelium-denuded aortic rings from Wistar-Kyoto and stroke-prone spontaneously hypertensive rats were used to evaluate contractions because of Ca(2+) influx. Depletion of intracellular Ca(2+) stores, which induces Ca(2+) release-activated Ca(2+) activation, was performed by placing arteries in Ca(2+) free-EGTA buffer. The addition of the Ca(2+) regular buffer produced greater contractions in aortas from stroke-prone spontaneously hypertensive rats versus Wistar-Kyoto rats. Thapsigargin (10 mu mol/L), an inhibitor of the sarcoplasmic reticulum Ca(2+) ATPase, further increased these contractions, especially in stroke-prone spontaneously hypertensive rat aorta. Addition of the Ca(2+) release-activated Ca(2+) channel inhibitors 2-aminoethoxydiphenyl borate (100 mu mol/L) or gadolinium (100 mu mol/L), as well as neutralizing antibodies to STIM-1 or Orai-1, abolished thapsigargin-increased contraction and the differences in spontaneous tone between the groups. Expression of Orai-1 and STIM-1 proteins was increased in aorta from stroke-prone spontaneously hypertensive rats when compared with Wistar-Kyoto rats. These results support the hypothesis that both Orai-1 and STIM-1 contribute to abnormal vascular function in hypertension. Augmented activation of STIM-1/Orai-1 may represent the mechanism that leads to impaired control of intracellular Ca(2+) levels in hypertension. (Hypertension. 2009; 53[part 2]: 409-416.)
Resumo:
Rationale: Previous studies have used myeloperoxidase (MPO) as an inflammatory marker to estimate the accumulation of neutrophils in inflamed regions. Objective: The aim of this experimental study was to quantify the levels of MPO related to experimental periodontal disease in rats. Methods: Periodontal disease was induced in a group of rats using placement of a ligature around molar teeth. A group of rats without ligature placement served as a control. Measurements were made on the 3rd, 7th, 15th and 30th day from baseline. Gingival tissues were taken for quantification of MPO levels by ELISA. Results: The rats with induced periodontal disease showed statistically higher MPO levels (p 0.05) when compared to control rats. A significant increase in the levels of MPO released on days 7 and 30 was observed, with higher levels in the group with induced periodontitis. Conclusion: The levels of MPO were found to be higher in rats with induced periodontal disease, confirming the hypothesis that MPO may serve as an inflammatory marker for periodontitis.
Resumo:
Chronic stimulation of beta-adrenoceptors with isoproterenol induces alteration of vascular reactivity and increases local proinflammatory cytokines. We investigated whether fenofibrate and pioglitazone, PPAR-alpha and -gamma agonists, respectively, improve the changes in vascular reactivity induced by isoproterenol. Wistar rats received isoproterenol (0.3 mg.kg(-1).day(-1), SC) or vehicle (CT) plus fenofibrate (alpha, 100 mg.kg(-1).day(-1), PO), pioglitazone (gamma, 2.5 mg.kg(-1).day(-1), PO), or water for 7 days. In aortas, isoproterenol treatment enhanced the maximal response (Rmax) to phenylephrine (10(-10) to 10(-4) M) compared to CT as previously demonstrated. The effects of endothelium removal (E-) or L-NAME incubation (100 mu M) on the phenylephrine response were smaller in isoproterenol-treated animals compared to CT while superoxide dismutase (SOD, 150 U/mL) significantly reduced the Rmax to phenylephrine to CT levels. Neither fenofibrate nor pioglitazone changed the effects induced by isoproterenol in aorta. E-, L-NAME, or SOD effects were similar between CT alpha and CT. However, pioglitazone per se increased Rmax to phenylephrine (CT: 59 +/- 4 versus CT gamma: 72 +/- 5 % of contraction to KCl). E- or L-NAME effects were reduced in CT gamma compared to CT, and SOD normalized the altered reactivity to phenylephrine in the CT gamma group. In conclusion, neither fenofibrate nor pioglitazone ameliorates the altered vascular reactivity present in aorta from isoproterenol-treated rats. Moreover, pioglitazone per se induced endothelial dysfunction and increased phenylephrine-induced contraction in aorta.
Resumo:
The syndrome of cancer cachexia is accompanied by several alterations in lipid metabolism, and the liver is markedly affected. Previous Studies showed that moderate exercise training may prevent liver fill accumulation through diminished delivery of lipids to the liver, increased hepatic oxidation and increased incorporation of triacylglycerol (TAG) into very low density lipoprotein (VLDL). Our aim was to examine the influence of moderate intensity training (8 weeks) upon TAG content, VLDL assembly and secretion, apolipoprotein B (apoB) and microsomal transfer protein (MTP) gene expression in the liver of cachectic tumour-bearing rats. Animals were randomly assigned to a sedentary control (SC), sedentary tumour-bearing (ST) or exercise-trained control (EC) or to all exercise trained tumour-bearing (ET) group. Trained rats ran on a treadmill (60% VO2max) for 60 min day(-1), 5 day week(-1), for 8 weeks. TAG content and the rate of VLDL secretion (followed for 3 h), its well its mRNA expression of apoB and MTP, and total cholesterol, VLDL-TAG, VLDL-cholesterol, high density lipoprotein cholesterol (HDL-cholesterol) and tumor weight were evaluated. VLDL-cholesterol showed a decrease in ST (p < 0.05) in relation to SC. Serum TAG, VLDL-TAG and tissue TAG content were all increased in ST (p < 0.01), when compared with SC. ST showed a lower rate of VLDL secretion (p < 0.05) and reduced expression of apoB (p < 0.001) and MTP (p < 0.001), when compared with SC. These parameters were restored to control values (p < 0.05) when the animals were submitted to the exercise training protocol. Tumour weight decreased 10-fold after training (p < 0.001). It is possible to affirm, therefore, that endurance training promoted the re-establishment of lipid metabolism in cachectic tumour-bearing animals, especially in relation to VLDL secretion and assembly. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Study Objectives: Chronic sleep deprivation of rats causes hyperphagia without body weight gain. Sleep deprivation hyperphagia is prompted by changes in pathways governing food intake; hyperphagia may be adaptive to sleep deprivation hypermetabolism. A recent paper suggested that sleep deprivation might inhibit ability of rats to increase food intake and that hyperphagia may be an artifact of uncorrected chow spillage. To resolve this, a palatable liquid diet (Ensure) was used where spillage is insignificant. Design: Sleep deprivation of male Sprague Dawley rats was enforced for 10 days by the flowerpot/platform paradigm. Daily food intake and body weight were measured. On day 10, rats were transcardially perfused for analysis of hypothalamic mRNA expression of the orexigen, neuropeptide Y (NPY). Setting: Morgan State University, sleep deprivation and transcardial perfusion; University of Maryland, NPY in situ hybridization and analysis. Measurements and Results: Using a liquid diet for accurate daily measurements, there was no change in food intake in the first 5 days of sleep deprivation. Importantly, from days 6-10 it increased significantly, peaking at 29% above baseline. Control rats steadily gained weight but sleep-deprived rats did not. Hypothalamic NPY mRNA levels were positively correlated to stimulation of food intake and negatively correlated with changes in body weight. Conclusion: Sleep deprivation hyperphagia may not be apparent over the short term (i.e., <= 5 days), but when extended beyond 6 days, it is readily observed. The timing of changes in body weight and food intake suggests that the negative energy balance induced by sleep deprivation prompts the neural changes that evoke hyperphagia.
Resumo:
Five species of mycoplasma are associated with several rat diseases. Mycoplasma pulmonis is the most important and most studied, possibly causing disease in rats and undermining the validity of laboratory experiments. M. pulmonis was isolated in 144/240 laboratory rats and identified by PCR in 155/240. This species was also detected in 12 human individuals (technicians of a laboratory animal house hold) in contact with these rats. The results were confirmed by sequencing of DNA products. Mycoplasma species are host specific; however, M. pulmonis was identified in humans, suggesting a case of unspecific colonization. Statistical analysis shows a greater risk for M. pulmonis colonizing individuals who are exposed to infected rats in animal facilities than individuals who do not. The detection of M. pulmonis in humans indicates a new status for this mollicute mycoplasmas in animal-holding facilities.
Resumo:
Low birth weight has been associated with increased obesity in adulthood. It has been shown that dietary salt restriction during intrauterine life induces low birth weight and insulin resistance in adult Wistar rats. The present study had a two-fold objective: to evaluate the effects that low salt intake during pregnancy and lactation has on the amount and distribution of adipose tissue; and to determine whether the phenotypic changes in fat mass in this model are associated with alterations in the activity of the renin-angiotensin system. Maternal salt restriction was found to reduce birth weight in male and female offspring. In adulthood, the female offspring of dams fed the low-salt diet presented higher adiposity indices than those seen in the offspring of dams fed a normal-salt diet. This was attributed to the fact that adipose tissue mass (retroperitoneal but not gonadal, mesenteric or inguinal) was greater in those rats than in the offspring of dams fed a normal diet. The adult offspring of dams fed the low-salt diet, compared to those dams fed a normal-salt diet, presented the following: plasma leptin levels higher in males and lower in females; plasma renin activity higher in males but not in females; and no differences in body weight, mean arterial blood pressure or serum angiotensin-converting enzyme activity. Therefore, low salt intake during pregnancy might lead to the programming of obesity in adult female offspring. (c) 2009 Elsevier Inc. All rights reserved.