128 resultados para Buffer circuits
Resumo:
The inferior colliculus (IC) is primarily involved in the processing of auditory information, but it is distinguished from other auditory nuclei in the brainstem by its connections with structures of the motor system. Functional evidence relating the IC to motor behavior derives from experiments showing that activation of the IC by electrical stimulation or excitatory amino acid microinjection causes freezing, escape-like behavior, and immobility. However, the nature of this immobility is still unclear. The present study examined the influence of excitatory amino acid-mediated mechanisms in the IC on the catalepsy induced by the dopamine receptor blocker haloperidol administered systemically (1 or 0.5 mg/kg) in rats. Haloperidol-induced catalepsy was challenged with prior intracollicular microinjections of glutamate NMDA receptor antagonists, MK-801 (15 or 30 mmol/0.5 mu l) and AP7 (10 or 20 nmol/0.5 mu l), or of the NMDA receptor agonist N-methyl-D-aspartate (NMDA, 20 or 30 nmol/0.5 mu l). The results showed that intracollicular microinjection of MK-801 and AP7 previous to systemic injections of haloperidol significantly attenuated the catalepsy, as indicated by a reduced latency to step down from a horizontal bar. Accordingly, intracollicular microinjection of NMDA increased the latency to step down the bar. These findings suggest that glutamate-mediated mechanisms in the neural circuits at the IC level influence haloperidol-induced catalepsy and participate in the regulation of motor activity. (C) 2010 Published by Elsevier B.V.
Resumo:
The inferior colliculus (IC) together with the dorsal periaqueductal gray (dPAG), the amygdala and the medial hypothalamus make part of the brain aversion system, which has mainly been related to the organization of unconditioned fear. However, the involvement of the IC and dPAG in the conditioned fear is still unclear. It is certain that GABA has a regulatory role on the aversive states generated and elaborated in these midbrain structures. In this study, we evaluated the effects of injections of the GABA-A receptor agonist muscimol (1.0 and 2.0 nmol/0.2 mu L) into the IC or dPAG on the freezing and fear-potentiated startle (FPS) responses of rats submitted to a context fear conditioning. Intra-IC injections of muscimol did not cause any significant effect on the FPS or conditioned freezing but enhanced the startle reflex in non-conditioned animals. In contrast, intra-dPAG injections of muscimol caused significant reduction in FPS and conditioned freezing without changing the startle reflex in non-conditioned animals. Thus, intra-dPAG injections of muscimol produced the expected inhibitory effects on the anxiety-related responses, the FPS and the freezing whereas these injections into the IC produced quite opposite effects suggesting that descending inhibitory pathways from the IC, probably mediated by GABA-A mechanisms, exert a regulatory role on the lower brainstem circuits responsible for the startle reflex. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Independent brain circuits appear to underlie different forms of conditioned fear, depending on the type of conditioning used, such as a context or explicit cue paired with footshocks. Several clinical reports have associated damage to the medial temporal lobe (MTL) with retrograde amnesia. Although a number of studies have elucidated the neural circuits underlying conditioned fear, the involvement of MTL components in the aversive conditioning paradigm is still unclear. To address this issue, we assessed freezing responses and Fos protein expression in subregions of the rhinal cortex and ventral hippocampus of rats following exposure to a context, light or tone previously paired with footshock (Experiment 1). A comparable degree of freezing was observed in the three types of conditioned fear, but with distinct patterns of Fos distribution. The groups exposed to cued fear conditioning did not show changes in Fos expression, whereas the group subjected to contextual fear conditioning showed selective activation of the ectorhinal (Ect), perirhinal (Per), and entorhinal (Ent) cortices, with no changes in the ventral hippocampus. We then examined the effects of the benzodiazepine midazolam injected bilaterally into these three rhinal subregions in the expression of contextual fear conditioning (Experiment 2). Midazolam administration into the Ect, Per, and Ent reduced freezing responses. These findings suggest that contextual and explicit stimuli endowed with aversive properties through conditioning recruit distinct brain areas, and the rhinal cortex appears to be critical for storing context-, but not explicit cue-footshock, associations. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Adrenocorticotropin (ACM) and alpha-melanocyte stimulating hormone (alpha-MSH) are peptides which present many physiological effects related to pigmentation, motor and sexual behavior, learning and memory, analgesia, anti-inflammatory and antipyretic processes. The 13 amino acid residues of alpha-MSH are the same initial sequence of ACM and due to the presence of a tryptophan residue in position 9 of the peptide chain, fluorescence techniques could be used to investigate the conformational properties of the hormones in different environments and the mechanisms of interaction with biomimetic systems like sodium dodecyl sulphate (SDS) micelles, sodium dodecyl sulphate-poly(ethylene oxide) (SDS-PEO) aggregates and neutral polymeric micelles. In buffer solution, fluorescence parameters were typical of peptides containing tryptophan exposed to the aqueous medium and upon addition of surfactant and polymer molecules, the gradual change of those parameters demonstrated the interaction of the peptides with the microheterogeneous systems. From time-resolved experiments it was shown that the interaction proceeded with conformational changes in both peptides, and further information was obtained from quenching of Trp fluorescence by a family of N-alkylpyridinium ions, which possess affinity to the microheterogeneous systems dependent on the length of the alkyl chain. The quenching of Trp fluorescence was enhanced in the presence of charged micelles, compared to the buffer solution and the accessibility of the fluorophore to the quencher was dependent on the peptide and the alkylpyridinium: in ACTH(1-21) highest collisional constants were obtained using ethylpyridinium as quencher, indicating a location of the residue in the surface of the micelle, while in alpha-MSH the best quencher was hexylpyridinium, indicating insertion of the residue into the non-polar region of the micelles. The results had shown that the interaction between the peptides and the biomimetic systems where driven by combined electrostatic and hydrophobic effects: in ACTH(1-24) the electrostatic interaction between highly positively charged C-terminal and negatively charged surface of micelles; and aggregates predominates over hydrophobic interactions involving residues in the central region of the peptide; in alpha-MSH, which presents one residual positive charge, the hydrophobic interactions are relevant to position the Trp residue in the non-polar region of the microheterogeneous systems. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Comparative studies of the tetrapod raldh2 (aldh1a2) gene, which encodes a retinoic acid (RA) synthesis enzyme, have led to the identification of a dorsal spinal cord enhancer. Enhancer activity is directed dorsally to the roof plate and dorsal-most (dl1) interneurons through predicted Tcf- and Cdx-homeodomain binding sites and is repressed ventrally via predicted Tgif homeobox and ventral Lim-homeodomain binding sites. Raldh2 and Math1/Cath1 expression in mouse and chicken highlights a novel, transient, endogenous Raldh2 expression domain in dl1 interneurons, which give rise to ascending circuits and intraspinal commissural interneurons, suggesting roles for RA in the ontogeny of spinocerebellar and intraspinal proprioceptive circuits. Consistent with expression of raldh2 in the dorsal interneurons of tetrapods, we also found that raldh2 is expressed in dorsal interneurons throughout the agnathan spinal cord, suggesting ancestral roles for RA signaling in the ontogenesis of intraspinal proprioception.
Resumo:
Neurobiological models support an involvement of white matter tracts in the pathophysiology of obsessive-compulsive disorder (OCD), but there has been little systematic evaluation of white matter volumes in OCD using magnetic resonance imaging (MRI). We investigated potential differences in the volume of the cingulum bundle (CB) and anterior limb of internal capsule (ALIC) in OCD patients (n = 19) relative to asymptomatic control subjects (n = 15). White matter volumes were assessed using a 1.5T MRI scanner. Between-group comparisons were carried out after spatial normalization and image segmentation using optimized voxel-based morphometry. Correlations between regional white matter volumes in OCD subjects and symptom severity ratings were also investigated. We found significant global white matter reductions in OCD patients compared to control subjects. The voxel-based search for regional abnormalities (with covariance for total white matter volumes) showed no specific white matter volume deficits in brain portions predicted a priori to be affected in OCD (CB and ALIC). However, large clusters of significant positive correlation with OCD severity scores were found bilaterally on the ALIC. These findings provide evidence of OCD-related ALIC abnormalities and suggest a connectivity dysfunction within frontal-striatal-thalamic-cortical circuits. Further studies are warranted to better define the role of such white matter alterations in the pathophysiology of OCD, and may provide clues for a more effectively targeting of neurosurgical treatments for OCD. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Objective: To determine the effect of semen storage and separation techniques on sperm DNA fragmentation. Design: Controlled clinical study. Setting: An assisted reproductive technology laboratory. Patient(s): Thirty normoozospermic semen samples obtained from patients undergoing infertility evaluation. Intervention(s): One aliquot from each sample was immediately prepared (control) for the sperm chromatin dispersion assay (SCD). Aliquots used to assess storage techniques were treated in the following ways: snap frozen by liquid nitrogen immersion, slow frozen with Tris-yolk buffer and glycerol, kept on ice for 24 hours or maintained at room temperature for 4 and 24 hours. Aliquots used to assess separation techniques were processed by the following methods: washed and centrifuged in media, swim-up from washed sperm pellet, density gradient separation, density gradient followed by swim-up. DNA integrity was then measured by SCD. Main Outcome Measure(s): DNA fragmentation as measured by SCD. Result(s): There was no significant difference in fragmentation among the snap frozen, slow frozen, and wet-ice groups. Compared to other storage methods short-term storage at room temperature did not impact DNA fragmentation yet 24 hours storage significantly increased fragmentation. Swim-up, density gradient and density gradient/swim-up had significantly reduced DNA fragmentation levels compared with washed semen. Postincubation, density gradient/swim-up showed the lowest fragmentation levels. Conclusion(s): The effect of sperm processing methods on DNA fragmentation should be considered when selecting storage or separation techniques for clinical use. (Fertil Steril (R) 2010;94:2626-30. (C) 2010 by American Society for Reproductive Medicine.)
Resumo:
Our study aims to investigate changes in electrocortical activity by observing the variations in absolute theta power in the primary somatomotor and parietal regions of the brain under three different electrical stimulation conditions: control group (without stimulation), group 24 (24 trials of stimulation) and group 36 (36 trials of stimulation). Thus, our hypothesis is that the application of different patterns of electrical stimulation will promote different states of habituation in these regions. The sample was composed of 24 healthy (absence of mental and physical impairments) students (14 male and 10 female), with ages varying from 25 to 40 years old (32.5 +/- 7.5), who are right-handed (Edinburgh Inventory). The subjects were randomly distributed into three groups: control (n = 8), G24 (n = 8) and G36 (n = 8). We use the Functional electrical stimulation (FES) equipment (NeuroCompact-2462) to stimulate the right index finger extensor muscle, while the electroencephalographic signal was simultaneously recorded. We found an interaction between condition and block factors for the C3 and P3 electrode, a condition and block main effects for the C4 electrode, and a condition main effect for the P4 electrode. Our results support the hypothesis that electrical stimulation promotes neurophysiological changes. It appears that stimulus adaptation (accommodation) of specific circuits can strengthen the brain`s ability to distinguish between and respond to such stimuli over time. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background: Organs from the so-called marginal donors have been used with a significant higher risk of primary non function than organs retrieved from the optimal donors. We investigated the early metabolic changes and blood flow redistribution in splanchnic territory in an experimental model that mimics marginal brain-dead (BD) donor. Material/Methods: Ten dogs (21.3 +/- 0.9 kg), were subjected to a brain death protocol induced by subdural balloon inflation and observed for 30 min thereafter without ally additional interventions. Mean arterial and intracranial pressures, heart rate, cardiac output (CO), portal vein and hepatic artery blood flows (PVBF and HABF, ultrasonic flowprobe), and O(2)-derived variables were evaluated. Results: An increase in arterial pressure, CO, PVBF and HABF was observed after BD induction. At the end, an intense hypotension with normalization in CO (3.0 +/- 0.2 VS. 2.8 +/- 2.8 L/min) and PVBF (687 +/- 114 vs. 623 +/- 130 ml/min) was observed, whereas HABF (277 33 vs. 134 28 ml/min, p<0.005) remained lower than baseline values. Conclusions: Despite severe hypotension induced by sudden increase of intracranial pressure, the systemic and splanchnic blood flows were partially preserved without signs of severe hypoperfusion (i.e. hyperlactatemia). Additionally, the HABF was mostly negatively affected in this model of marginal BD donor. Our data suggest that not only the cardiac output, but the intrinsic hepatic microcirculatory mechanism plays a role in the hepatic blood flow control after BD.
Resumo:
The Golgi method has been used for over a century to describe the general morphology of neurons in the nervous system of different species. The ""single-section"" Golgi method of Gabbott and Somogyi (1984) and the modifications made by Izzo et al. (1987) are able to produce consistent results. Here, we describe procedures to show cortical and subcortical neurons of human brains immersed in formalin for months or even years. The tissue was sliced with a vibratome, post-fixed in a combination of paraformaldehyde and picric acid in phosphate buffer, followed by osmium tetroxide and potassium dicromate, ""sandwiched"" between cover slips, and immersed in silver nitrate. The whole procedure takes between 5 and 11 days to achieve good results. The Golgi method has its characteristic pitfalls but, with this procedure, neurons and glia appear well-impregnated, allowing qualitative and quantitative studies under light microscopy. This contribution adds to the basic techniques for the study of human nervous tissue with the same advantages described for the ""single-section"" Golgi method in other species; it is easy and fast, requires minimal equipment, and provides consistent results. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The present study compared two heating methods currently used for antigen retrieval (AR) immunostaining: the microwave oven and the steam cooker. Myosin-V, a molecular motor involved in vesicle transport, was used as a neuronal marker in honeybee Apis mellifera brains fixed in formalin. Overall, the steam cooker showed the most satisfactory AR results. At 100 degrees C, tissue morphology was maintained and revealed epitope recovery, while evaporation of the AR solution was markedly reduced; this is important for stabilizing the sodium citrate molarity of the AR buffer and reducing background effects. Standardization of heat-mediated AR of formalin-fixed and paraffin-embedded tissue sections results in more reliable immunostaining of the honeybee brain.
Resumo:
The elevated plus-maze is an animal model used to study anxiety. In a second session, rats show a reduction in the exploratory behavior even when the two sessions are separated by intervals as large as 7 days. The aim of the present study was to investigate whether the reduction in the exploratory behavior is maintained after intervals larger than 7 days. Additionally, we aimed at investigating eventual correlations between behaviors in the plus-maze and activation of limbic structures as measured by Fos protein expression after the second session. Rats were tested for 5 min in the elevated plus-maze and re-tested 3, 9 or 33 days later. Other groups were tested only once. The rat brains were processed for immunohistochemical detection of Fos protein. The results show a decrease in the open arms exploration in the second trial with intervals of 3, 9 and 33 days. The expression of Fos protein in the piriform cortex, septal nucleus and paraventricular hypothalamic nucleus in the groups tested with intervals of 9 and 33 days were statistically different from the other groups. The alterations observed in exploratory behavior in the second session in the plus-maze did not correlate with Fos expression. In conclusion, although the specific test conditions were sufficient to evoke behavioral alterations in exploration in the elevated plus-maze, they were enough to induce significant Fos protein expression in piriform cortex, septal nucleus and thalamic and hypothalamic paraventricular nuclei but not in other areas such as dorsomedial nucleus of the hypothalamus and amygdala nuclei, known to be also active participants in circuits controlling fear and anxiety. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Modulation of salt appetite involves interactions between the circumventricular organs (CVOs) receptive areas and inhibitory hindbrain serotonergic circuits. Recent studies provide support to the idea that the serotonin action in the lateral parabrachial nucleus (LPBN) plays an important inhibitory role in the modulation of sodium appetite. The aim of the present work was to identify the specific groups of neurons projecting to the LPBN that are activated in the course of sodium appetite regulation, and to analyze the associated endocrine response, specifically oxytocin (OT) and atrial natriuretic peptide (ANP) plasma release, since both hormones have been implicated in the regulatory response to fluid reestablishment. For this purpose we combined the detection of a retrograde transported dye, Fluorogold (FG) injected into the LPBN with the analysis of the Fos immunocytochemistry brain pattern after sodium intake induced by sodium depletion. We analyzed the Fos-FG immunoreactivity after sodium ingestion induced by peritoneal dialysis (PD). We also determined OT and ANP plasma concentration by radioimmunoassay (RIE) before and after sodium intake stimulated by PD. The present study identifies specific groups of neurons along the paraventricular nucleus, central extended amygdala, insular cortex, dorsal raphe nucleus, nucleus of the solitary tract and the CVOs that are activated during the modulation of sodium appetite and have direct connections with the LPBN. It also shows that OT and ANP are released during the course of sodium satiety and fluid reestablishment. The result of this brain network activity may enable appropriate responses that re-establish the body fluid balance after induced sodium consumption. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Neutrophil influx is essential for corneal regeneration (Gan et al. 1999). KM+, a lectin from Artocarpus integrifolia, induces neutrophil migration (Santos-de-Oliveira et al. 1994). This study aims at investigating a possible effect of KM+ on corneal regeneration in rabbits. A 6,0-mm diameter area of debridement was created on the cornea of both eyes by mechanical scraping. The experimental eyes received drops of KM+ (2.5 mu g/ml) every 2 h, The control eyes received buffer, The epithelial wounded areas of the lectin-treated and untreated eyes were stained with fluorescein, photographed and measured, The animals were killed 12 h (group 1, n = 5), 24 h (group 2, n = 10) and 48 h (group 3, n = 5) after the scraping. The corneas were analysed histologically (haematoxylin and eosin and immunostaining for proliferation cell nuclear antigen, p&3, vascular endothelial growth factor, c-Met and laminin). No significant differences were found at the epithelial gap between treated and control eyes in the group 1. However, the number of neutrophils in the wounded area was significantly higher in treated eyes in this group. Three control and seven treated eyes were healed completely and only rare neutrophils persisted in the corneal stroma in group 2. No morphological distinction was observed between treated and control eyes in group 3. In treated corneas of group 2, there was an increase in immunostaining of factors involved in corneal healing compared to controls, Thus, topical application of KM+ may facilitate corneal epithelial wound healing in rabbits by means of a mechanism that involves increased influx of neutrophils into the wounded area induced by the lectin.
Resumo:
The tissue microarray (TMA) technique allows multiple tissue samples in a single block. Commercial adhesive tape is used to avoid the loss of tissue samples during the immunostaining process. Few reports exist in the literature comparing the use of these adhesive tapes to other adhesive techniques. The objective of this study was to compare loss of sections adhered to slides using commercial adhesive tapes versus using silanized only slides. TMA was constructed with varying tissues using a fixed-base device (Beecher Instruments), placing 108 cylinders of 1 mm diameter in duplicate, spaced 1.2 mm apart. Section of 4 mu m were cut from the TMA block and adhered to 30 silanized slides and 30 commercial glass slides using adhesive tape, according to manufacturer`s recommendations. Vimentin immunoexpression was evaluated by immunohistochemistry. Antigenic recovery was realized in citrate buffer using a microwave oven. Cylinder loss in the immunohistochemical process was quantified and expressed as: total (>80%), almost complete (75-79%), or partial (50-74%). The commercial adhesive tape group presented lesser total loss (1.1 versus 6.4%), almost complete loss (2.2 versus 3.5%), and partial loss (2.1 versus 3.8%) than the silanized slide group (ANOVA, P < 0.05). The sum of total and almost complete losses in the silanized slide group was 9.9%, greater than the losses in slides using commercial adhesive tapes (3.3%) and less than reported and considered acceptable in the literature (10-30%). In conclusion, the use of silanized only slides presents very satisfactory results, requires less training, and reduces costs significantly, thus justifying their use in research.