183 resultados para Alexandre Lazzarini
Resumo:
Background: The rapid progress currently being made in genomic science has created interest in potential clinical applications; however, formal translational research has been limited thus far. Studies of population genetics have demonstrated substantial variation in allele frequencies and haplotype structure at loci of medical relevance and the genetic background of patient cohorts may often be complex. Methods and Findings: To describe the heterogeneity in an unselected clinical sample we used the Affymetrix 6.0 gene array chip to genotype self-identified European Americans (N = 326), African Americans (N = 324) and Hispanics (N = 327) from the medical practice of Mount Sinai Medical Center in Manhattan, NY. Additional data from US minority groups and Brazil were used for external comparison. Substantial variation in ancestral origin was observed for both African Americans and Hispanics; data from the latter group overlapped with both Mexican Americans and Brazilians in the external data sets. A pooled analysis of the African Americans and Hispanics from NY demonstrated a broad continuum of ancestral origin making classification by race/ethnicity uninformative. Selected loci harboring variants associated with medical traits and drug response confirmed substantial within-and between-group heterogeneity. Conclusion: As a consequence of these complementary levels of heterogeneity group labels offered no guidance at the individual level. These findings demonstrate the complexity involved in clinical translation of the results from genome-wide association studies and suggest that in the genomic era conventional racial/ethnic labels are of little value.
Resumo:
Objective: The purpose of this study was to evaluate the effect of 830-nm laser in blocking the action of nicotine on the viability of skin flap. Background data: The authors have analyzed the deleterious effect of cigarette smoke or nicotine on the skin flap alone with evidence of increased skin necrosis in the flap. Materials and methods: Twenty-four Wistar-albino rats were divided into three groups of eight animals each: Group 1 (control), subjected to a surgical technique to obtain a flap for cranial base, laser irradiation simulation, and a subcutaneous injection of saline; Group 2, similar to Group 1, with subcutaneous injection of nicotine (2mg/kg/day) for a period of 1 week before and 1 week after surgery; and Group 3, similar to Group 2, with skin flaps subjected to a lambda 830-nm laser irradiation. The laser parameters used were: power 30 mW, beam area 0.07cm(2), irradiance 429 mW/cm(2), irradiation time 84 sec, total energy 2.52J, and energy density 36J/cm(2). The laser was used immediately after surgery and for 4 consecutive days, in one point at 2.5 cm of the flap cranial base. The areas of necrosis were examined by two macroscopic analyses: paper template and Mini-Mop (R). The pervious blood vessels were also counted. Results: The results were statistically analyzed by ANOVA and post-test contrast orthogonal method (multiple comparisons), showing that the laser decreased the area of necrosis in flaps subjected to nicotine, and consequently, increased the number of blood vessels (p < 0.05). Conclusions: The laser proved to be an effective way to decrease the area of necrosis in rats subjected to nicotine, making them similar to the control group.
Resumo:
Objective: The aim of this study was to assess the effects of 830 and 670 nm laser on malondialdehyde (MDA) concentration in random skin-flap survival. Background Data: Low-level laser therapy (LLLT) has been reported to be successful in stimulating the formation of new blood vessels and activating superoxide-dismutase delivery, thus helping the inhibition of free-radical action and consequently reducing necrosis. Materials and Methods: Thirty Wistar rats were used and divided into three groups, with 10 rats in each one. A random skin flap was raised on the dorsum of each animal. Group 1 was the control group; group 2 received 830 nm laser radiation; and group 3 was submitted to 670 nm laser radiation. The animals underwent laser therapy with 36 J/cm(2) energy density immediately after surgery and on the 4 days subsequent to surgery. The application site of the laser radiation was 1 point, 2.5 cm from the flap's cranial base. The percentage of the skin-flap necrosis area was calculated 7 days postoperative using the paper-template method, and a skin sample was collected immediately after as a way of determining the MDA concentration. Results: Statistically significant differences were found between the necrosis percentages, with higher values seen in group 1 compared with groups 2 and 3. Groups 2 and 3 did not present statistically significant differences (p > 0.05). Group 3 had a lower concentration of MDA values compared to the control group (p < 0.05). Conclusion: LLLT was effective in increasing the random skin-flap viability in rats, and the 670 nm laser was efficient in reducing the MDA concentration.
Resumo:
As previously shown, higher levels of NOTCH1 and increased NF-kappa B signaling is a distinctive feature of the more primitive umbilical cord blood (UCB) CD34+ hematopoietic stem cells (HSCs), as compared to bone marrow ( BM). Differences between BM and UCB cell composition also account for this finding. The CD133 marker defines a more primitive cell subset among CD34+ HSC with a proposed hemangioblast potential. To further evaluate the molecular basis related to the more primitive characteristics of UCB and CD133+ HSC, immunomagnetically purified human CD34+ and CD133+ cells from BM and UCB were used on gene expression microarrays studies. UCB CD34+ cells contained a significantly higher proportion of CD133+ cells than BM (70% and 40%, respectively). Cluster analysis showed that BM CD133+ cells grouped with the UCB cells ( CD133+ and CD34+) rather than to BM CD34+ cells. Compared with CD34+ cells, CD133+ had a higher expression of many transcription factors (TFs). Promoter analysis on all these TF genes revealed a significantly higher frequency ( than expected by chance) of NF-kappa B-binding sites (BS), including potentially novel NF-kappa B targets such as RUNX1, GATA3, and USF1. Selected transcripts of TF related to primitive hematopoiesis and self-renewal, such as RUNX1, GATA3, USF1, TAL1, HOXA9, HOXB4, NOTCH1, RELB, and NFKB2 were evaluated by real-time PCR and were all significantly positively correlated. Taken together, our data indicate the existence of an interconnected transcriptional network characterized by higher levels of NOTCH1, NF-kappa B, and other important TFs on more primitive HSC sets.
Resumo:
impairment of CCAAT Enhancer Binding Protein alpha (CEBPA) function is a common finding in acute myeloid leukemia; nevertheless, its relevance for acute promyelocytic leukemia pathogenesis is unclear. We analyzed the expression and assessed the methylation status of the core and upstream promoters of CEBPA in acute promyelocytic leukemia at diagnosis. Patients with acute promyelocytic leukemia (n=18) presented lower levels of CEBPA expression compared to healthy controls (n=5), but higher levels than those in acute myeloid leukemia with t(8;21) (n=9) and with inv(16) (n=5). Regarding the core promoter, we detected no methylation in 39 acute promyelocytic leukemia samples or in 8 samples from controls. In contrast, analysis of the upstream promoter showed methylation in 37 of 39 samples, with 17 patients showing methylation levels over 30%. Our results corroborate data obtained in animal models showing that CEBPA is down-regulated in acute promyelocytic leukemia stem cells and suggest that epigenetic mechanisms may be involved.
Resumo:
Marfan syndrome is an autosomal dominant disease of connective tissue caused by mutations in the fibrillin-1 encoding gene FBN1. Patients present cardiovascular, ocular and skeletal manifestations, and although being fully penetrant, MFS is characterized by a wide clinical variability both within and between families. Here we describe a new mouse model of MFS that recapitulates the clinical heterogeneity of the syndrome in humans. Heterozygotes for the mutant Fbn1 allele mg Delta(loxPneo), carrying the same internal deletion of exons 19-24 as the mg Delta mouse model, present defective microfibrillar deposition, emphysema, deterioration of aortic wall and kyphosis. However, the onset of a clinical phenotypes is earlier in the 129/Sv than in C57BL/6 background, indicating the existence of genetic modifiers of MFS between these two mouse strains. In addition, we characterized a wide clinical variability within the 129/Sv congenic heterozygotes, suggesting involvement of epigenetic factors in disease severity. Finally, we show a strong negative correlation between overall levels of Fbn1 expression and the severity of the phenotypes, corroborating the suggested protective role of normal fibrillin-1 in MFS pathogenesis, and supporting the development of therapies based on increasing Fbn1 expression.
Resumo:
Aggressive periodontitis is characterized by a rapid and severe periodontal destruction in young systemically healthy subjects. A greater prevalence is reported in Africans and African descendent groups than in Caucasians and Hispanics. We first fine mapped the interval 1q24.2 to 1q31.3 suggested as containing an aggressive periodontitis locus. Three hundred and eighty-nine subjects from 55 pedigrees were studied. Saliva samples were collected from all subjects, and DNA was extracted. Twenty-one single nucleotide polymorphisms were selected and analyzed by standard polymerase chain reaction using TaqMan chemistry. Non-parametric linkage and transmission distortion analyses were performed. Although linkage results were negative, statistically significant association between two markers, rs1935881 and rs1342913, in the FAM5C gene and aggressive periodontitis (p = 0.03) was found. Haplotype analysis showed an association between aggressive periodontitis and the haplotype A-G (rs1935881-rs1342913; p = 0.009). Sequence analysis of FAM5C coding regions did not disclose any mutations, but two variants in conserved intronic regions of FAM5C, rs57694932 and rs10494634, were found. However, these two variants are not associated with aggressive periodontitis. Secondly, we investigated the pattern of FAM5C expression in aggressive periodontitis lesions and its possible correlations with inflammatory/immunological factors and pathogens commonly associated with periodontal diseases. FAM5C mRNA expression was significantly higher in diseased versus healthy sites, and was found to be correlated to the IL-1 beta, IL-17A, IL-4 and RANKL mRNA levels. No correlations were found between FAM5C levels and the presence and load of red complex periodontopathogens or Aggregatibacter actinomycetemcomitans. This study provides evidence that FAM5C contributes to aggressive periodontitis.
Resumo:
Objective: To identify the skeletal, dentoalveolar, and soft tissue changes that occur during Class II correction with the Cantilever Bite Jumper (CBJ). Materials and Methods: This prospective cephalometric study was conducted on 26 subjects with Class II division 1 malocclusion treated with the CBJ appliance. A comparison was made with 26 untreated subjects with Class II malocclusion. Lateral head films from before and after CBJ therapy were analyzed through conventional cephalometric and Johnston analyses. Results: Class II correction was accomplished by means of 2.9 mm apical base change, 1.5 mm distal movement of the maxillary molars, and 1.1 mm mesial movement of the mandibular molars. The CBJ exhibited good control of the vertical dimension. The main side effect of the CBJ is that the vertical force vectors of the telescope act as lever arms and can produce mesial tipping of the mandibular molars. Conclusions: The Cantilever Bite Jumper corrects Class II malocclusions with similar percentages of skeletal and dentoalveolar effects. (Angle Orthod. 2009:79;)
Resumo:
Objectives: The purpose of this study was to investigate the levels of electromyographic (EMG) activation and maximal molar bite force before and after a 3-month acupuncture therapy in individuals with temporomandibular disorder (Helkimo Index) from a pool of subjects attending the Special Care Course of the Ribeirao Preto Dental School, Sao Paulo University, Brazil. Design: All 17 patients, aged between 37 and 50 years (44.2 +/- 4.84 years), with an average weight of 71 +/- 9.45 kg and height of 1.64 +/- 0.07 m, were clinically examined with regard to pain and dysfunctions of the masticatory system. The temporomandibular acupuncture points of needling were IG4, E6, E7, B2, VB14, VB20, ID18, ID19, F3, E36, VB34, E44, R3, and HN3. EMG measures were acquired before and after the treatment using a MyoSystem-BR1 electromyographer. The data collected at rest, protrusion, left and right laterality, and clenching were normalized by maximum voluntary contraction. Maximal bite force in right and left molar regions were registered using a dynamometer with a capacity of up to 1000 N, adapted for oral conditions. The highest value out of three recordings was considered to be the individual's maximal bite force. The results were statistically analyzed using the paired t test (SPSS version 15.0) during the comparison before and after treatment. Results: We found decreased EMG activity at rest, protrusion, left and right laterality, and clenching; as well as increased values of maximal bite force after acupuncture treatment. Conclusions: Acupuncture promoted alterations in the EMG activity of masticatory muscles, increased maximal molar bite force, and led to remission of the subjects' painful symptomatology.
Resumo:
Background: Although exercise training has well-known cardiorespiratory and metabolic benefits, low compliance with exercise training programs is a fact, and the harmful effects of physical detraining regarding these adaptations usually go unnoticed. We investigated the effects of exercise detraining on blood pressure, insulin sensitivity, and GLUT4 expression in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Methods: Studied animals were randomized into sedentary, trained (treadmill running/5 days a week, 60 min/day for 10 weeks), 1 week of detraining, and 2 weeks of detraining. Blood pressure (tail-cuff system), insulin sensitivity (kITT), and GLUT4 (Western blot) in heart, gastrocnemius and white fat tissue were measured. Results: Exercise training reduced blood pressure (19%), improved insulin sensitivity (24%), and increased GLUT4 in the heart (+34%); gastrocnemius (+36%) and fat (+22%) in SHR. In WKY no change in either blood pressure or insulin sensitivity were observed, but there was an increase in GLUT4 in the heart (+25%), gastrocnemius (+45%) and fat (+36%) induced by training. Both periods of detraining did not induce any change in neither blood pressure nor insulin sensitivity in SHR and WKY. One-week detraining reduced GLUT4 in SHR (heart: -28%; fat: -23%) and WKY (heart: -19%; fat: -22%); GLUT4 in the gastrocnemius was reduced after a 2-week detraining (SHR: -35%; WKY: -25%). There was a positive correlation between GLUT4 (gastrocnemius) and the maximal velocity in the exercise test (r = 0.60, p = 0.004). Conclusions: The study findings show that in detraining, despite reversion of the enhanced GLUT4 expression, cardiorespiratory and metabolic beneficial effects of exercise are preserved.
Resumo:
Background: The tubule-interstitial fibrosis is the hallmark of progressive renal disease and is strongly associated with inflammation of this compartment. Heme-oxygenase-1 (HO-1) is a cytoprotective molecule that has been shown to be beneficial in various models of renal injury. However, the role of HO-1 in reversing an established renal scar has not yet been addressed. Aim: We explored the ability of HO-1 to halt and reverse the establishment of fibrosis in an experimental model of chronic renal disease. Methods: Sprague-Dawley male rats were subjected to unilateral ureteral obstruction (UUO) and divided into two groups: non-treated and Hemin-treated. To study the prevention of fibrosis, animals were pre-treated with Hemin at days -2 and -1 prior to UUO. To investigate whether HO-1 could reverse established fibrosis, Hemin therapy was given at days 6 and 7 post-surgery. After 7 and/or 14 days, animals were sacrificed and blood, urine and kidney tissue samples were collected for analyses. Renal function was determined by assessing the serum creatinine, inulin clearance, proteinuria/creatininuria ratio and extent of albuminuria. Arterial blood pressure was measured and fibrosis was quantified by Picrosirius staining. Gene and protein expression of pro-inflammatory and pro-fibrotic molecules, as well as HO-1 were performed. Results: Pre-treatment with Hemin upregulated HO-1 expression and significantly reduced proteinuria, albuminuria, inflammation and pro-fibrotic protein and gene expressions in animals subjected to UUO. Interestingly, the delayed treatment with Hemin was also able to reduce renal dysfunction and to decrease the expression of pro-inflammatory molecules, all in association with significantly reduced levels of fibrosis-related molecules and collagen deposition. Finally, TGF-beta protein production was significantly lower in Hemin-treated animals. Conclusion: Treatment with Hemin was able both to prevent the progression of fibrosis and to reverse an established renal scar. Modulation of inflammation appears to be the major mechanism behind HO-1 cytoprotection.
Resumo:
Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil. The CLAIM-3D (3-Dimensional Cloud Aerosol Interaction Mission) satellite concept proposed here combines several techniques to simultaneously measure the vertical profile of cloud microphysics, thermodynamic phase, brightness temperature, and aerosol amount and type in the neighborhood of the clouds. The wide wavelength range, and the use of multi-angle polarization measurements proposed for this mission allow us to estimate the availability and characteristics of aerosol particles acting as cloud condensation nuclei, and their effects on the cloud microphysical structure. These results can provide unprecedented details on the response of cloud droplet microphysics to natural and anthropogenic aerosols in the size scale where the interaction really happens.
Resumo:
In this study, we examine the spectral dependence of aerosol absorption at different sites and seasons in the Amazon Basin. The analysis is based on measurements performed during three intensive field experiments at a pasture site (Fazenda Nossa Senhora, Rondonia) and at a primary forest site (Cuieiras Reserve, Amazonas), from 1999 to 2004. Aerosol absorption spectra were measured using two Aethalometers: a 7-wavelength Aethalometer (AE30) that covers the visible (VIS) to near-infrared (NIR) spectral range, and a 2-wavelength Aethalometer (AE20) that measures absorption in the UV and in the NIR. As a consequence of biomass burning emissions, about 10 times greater absorption values were observed in the dry season in comparison to the wet season. Power law expressions were fitted to the measurements in order to derive the absorption Angstrom exponent, defined as the negative slope of absorption versus wavelength in a log-log plot. At the pasture site, about 70% of the absorption Angstrom exponents fell between 1.5 and 2.5 during the dry season, indicating that biomass burning aerosols have a stronger spectral dependence than soot carbon particles. Angstrom exponents decreased from the dry to the wet season, in agreement with the shift from biomass burning aerosols, predominant in the fine mode, to biogenic and dust aerosols, predominant in the coarse mode. The lowest absorption Angstrom exponents (90% of data below 1.5) were observed at the forest site during the dry season. Also, results indicate that low absorption coefficients were associated with low Angstrom exponents. This finding suggests that biogenic aerosols from Amazonia have a weaker spectral dependence for absorption than biomass burning aerosols, contradicting our expectations of biogenic particles behaving as brown carbon. In a first order assessment, results indicate a small (<1 %) effect of variations in absorption Angstrom exponents on 24-h aerosol forcings, at least in the spectral range of 450-880 nm. Further studies should be taken to assess the corresponding impact in the UV spectral range. The assumption that soot spectral properties represent all ambient light absorbing particles may cause a misjudgment of absorption towards the UV, especially in remote areas. Therefore, it is recommended to measure aerosol absorption at several wavelengths to accurately assess the impact of non-soot aerosols on climate and on photochemical atmospheric processes.
Resumo:
We study the potential of the CERN large hadron collider to probe the spin of new massive vector boson resonances predicted by Higgsless models. We consider its production via weak boson fusion which relies only on the coupling between the new resonances and the weak gauge bosons. We show that the large hadron collider will be able to unravel the spin of the particles associated with the partial restoration of unitarity in vector boson scattering for integrated luminosities of 150-560 fb(-1), depending on the new state mass and on the method used in the analyses.
Resumo:
We show, using ab initio density functional theory calculations, that Mn dimers adsorbed on graphene nanoribbons (Mn(2)/GNRs) present a magnetic bistability, as does the isolated Mn dimer. Our total energy results indicate that Mn dimers lying along the edge sites of zigzag GNRs represent the most likely configuration. We find that similar to the isolated Mn(2) molecule, the antiferromagnetic coupling represents the ground state for Mn(2)/GNR, and the spin density configuration of the GNR does not play an important role on the net magnetic moment of Mn(2), which makes GNRs an ideal substrate for adsorption of these molecules. The ground state and the excited state configuration of the Mn dimer, viz., low-spin (LS) and high-spin (HS), are maintained in the face of changes in the spin density configuration of the substrate. Here we find that the Mn(2)/GNR systems exhibit a LS <-> HS binary behavior, which can be considered as a useful property in the development of nanomemories based upon metallic clusters. (C) 2011 American Institute of Physics. [doi:10.1063/1.3553849]