160 resultados para variable data printing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermodynamic properties of bread dough (fusion enthalpy, apparent specific heat, initial freezing point and unfreezable water) were measured at temperatures from -40 degrees C to 35 degrees C using differential scanning calorimetry. The initial freezing point was also calculated based on the water activity of dough. The apparent specific heat varied as a function of temperature: specific heat in the freezing region varied from (1.7-23.1) J g(-1) degrees C(-1), and was constant at temperatures above freezing (2.7 J g(-1) degrees C(-1)). Unfreezable water content varied from (0.174-0.182) g/g of total product. Values of heat capacity as a function of temperature were correlated using thermodynamic models. A modification for low-moisture foodstuffs (such as bread dough) was successfully applied to the experimental data. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to its outstanding flexibility, batch distillation is still widely used in many separation processes. In the present work, a comparison between constant and variable reflux operations is studied. Firstly, a mathematical model is developed and then validated through comparison between predicted and experimental results accomplished in a lab-scale apparatus. Therefore, case studies are performed through mathematical simulations. It is noted that the most economical form of batch distillation is at constant overhead product composition, keeping the flow rate of vapor from the top of the column constant. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective was to study the flow pattern in a plate heat exchanger (PHE) through residence time distribution (RTD) experiments. The tested PHE had flat plates and it was part of a laboratory scale pasteurization unit. Series flow and parallel flow configurations were tested with a variable number of passes and channels per pass. Owing to the small scale of the equipment and the short residence times, it was necessary to take into account the influence of the tracer detection unit on the RID data. Four theoretical RID models were adjusted: combined, series combined, generalized convection and axial dispersion. The combined model provided the best fit and it was useful to quantify the active and dead space volumes of the PHE and their dependence on its configuration. Results suggest that the axial dispersion model would present good results for a larger number of passes because of the turbulence associated with the changes of pass. This type of study can be useful to compare the hydraulic performance of different plates or to provide data for the evaluation of heat-induced changes that occur in the processing of heat-sensitive products. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, an axisymmetric two-dimensional finite element model was developed to simulate instrumented indentation testing of thin ceramic films deposited onto hard steel substrates. The level of film residual stress (sigma(r)), the film elastic modulus (E) and the film work hardening exponent (n) were varied to analyze their effects on indentation data. These numerical results were used to analyze experimental data that were obtained with titanium nitride coated specimens, in which the substrate bias applied during deposition was modified to obtain films with different levels of sigma(r). Good qualitative correlation was obtained when numerical and experimental results were compared, as long as all film properties are considered in the analyses, and not only sigma(r). The numerical analyses were also used to further understand the effect of sigma(r) on the mechanical properties calculated based on instrumented indentation data. In this case, the hardness values obtained based on real or calculated contact areas are similar only when sink-in occurs, i.e. with high n or high ratio VIE, where Y is the yield strength of the film. In an additional analysis, four ratios (R/h(max)) between indenter tip radius and maximum penetration depth were simulated to analyze the combined effects of R and sigma(r) on the indentation load-displacement curves. In this case, or did not significantly affect the load curve exponent, which was affected only by the indenter tip radius. On the other hand, the proportional curvature coefficient was significantly affected by sigma(r) and n. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to present an economical design of an X chart for a short-run production. The process mean starts equal to mu(0) (in-control, State I) and in a random time it shifts to mu(1) > mu(0) (out-of-control, State II). The monitoring procedure consists of inspecting a single item at every m produced ones. If the measurement of the quality characteristic does not meet the control limits, the process is stopped, adjusted, and additional (r - 1) items are inspected retrospectively. The probabilistic model was developed considering only shifts in the process mean. A direct search technique is applied to find the optimum parameters which minimizes the expected cost function. Numerical examples illustrate the proposed procedure. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the first time, we introduce and study some mathematical properties of the Kumaraswamy Weibull distribution that is a quite flexible model in analyzing positive data. It contains as special sub-models the exponentiated Weibull, exponentiated Rayleigh, exponentiated exponential, Weibull and also the new Kumaraswamy exponential distribution. We provide explicit expressions for the moments and moment generating function. We examine the asymptotic distributions of the extreme values. Explicit expressions are derived for the mean deviations, Bonferroni and Lorenz curves, reliability and Renyi entropy. The moments of the order statistics are calculated. We also discuss the estimation of the parameters by maximum likelihood. We obtain the expected information matrix. We provide applications involving two real data sets on failure times. Finally, some multivariate generalizations of the Kumaraswamy Weibull distribution are discussed. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recognition of temporally stable locations with respect to soil water content is of importance for soil water management decisions, especially in sloping land of watersheds. Neutron probe soil water content (0 to 0.8 m), evaluated at 20 dates during a year in the Loess Plateau of China, in a 20 ha watershed dominated by Ust-Sandiic Entisols and Aeolian sandy soils, were used to define their temporal stability through two indices: the standard deviation of relative difference (SDRD) and the mean absolute bias error (MABE). Specific concerns were (a) the relationship of temporal stability with soil depth, (b) the effects of soil texture and land use on temporal stability, and (c) the spatial pattern of the temporal stability. Results showed that temporal stability of soil water content at 0.2 m was significantly weaker than those at the soil depths of 0.6 and 0.8 m. Soil texture can significantly (P<0.05) affect the stability of soil water content except for the existence of an insignificant difference between sandy loam and silt loam textures, while temporal stability of areas covered by bunge needlegrass land was not significantly different from those covered by korshinsk peashrub. Geostatistical analysis showed that the temporal stability was spatially variable in an organized way as inferred by the degree of spatial dependence index. With increasing soil depth, the range of both temporal stability indices showed an increasing trend, being 65.8-120.5 m for SDRD and 148.8-214.1 m for MABE, respectively. This study provides a valuable support for soil water content measurements for soil water management and hydrological applications on sloping land areas. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To describe onset features, classification and treatment of juvenile dermatomyositis (JDM) and juvenile polymyositis (JPM) from a multicentre registry. Methods Inclusion criteria were onset age lower than 18 years and a diagnosis of any idiopathic inflammatory myopathy (IIM) by attending physician. Bohan & Peter (1975) criteria categorisation was established by a scoring algorithm to define JDM and JPM based oil clinical protocol data. Results Of the 189 cases included, 178 were classified as JDM, 9 as JPM (19.8: 1) and 2 did not fit the criteria; 6.9% had features of chronic arthritis and connective tissue disease overlap. Diagnosis classification agreement occurred in 66.1%. Medial? onset age was 7 years, median follow-up duration was 3.6 years. Malignancy was described in 2 (1.1%) cases. Muscle weakness occurred in 95.8%; heliotrope rash 83.5%; Gottron plaques 83.1%; 92% had at least one abnormal muscle enzyme result. Muscle biopsy performed in 74.6% was abnormal in 91.5% and electromyogram performed in 39.2% resulted abnormal in 93.2%. Logistic regression analysis was done in 66 cases with all parameters assessed and only aldolase resulted significant, as independent variable for definite JDM (OR=5.4, 95%CI 1.2-24.4, p=0.03). Regarding treatment, 97.9% received steroids; 72% had in addition at least one: methotrexate (75.7%), hydroxychloroquine (64.7%), cyclosporine A (20.6%), IV immunoglobulin (20.6%), azathioprine (10.3%) or cyclophosphamide (9.6%). In this series 24.3% developed calcinosis and mortality rate was 4.2%. Conclusion Evaluation of predefined criteria set for a valid diagnosis indicated aldolase as the most important parameter associated with de, methotrexate combination, was the most indicated treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimation of Taylor`s power law for species abundance data may be performed by linear regression of the log empirical variances on the log means, but this method suffers from a problem of bias for sparse data. We show that the bias may be reduced by using a bias-corrected Pearson estimating function. Furthermore, we investigate a more general regression model allowing for site-specific covariates. This method may be efficiently implemented using a Newton scoring algorithm, with standard errors calculated from the inverse Godambe information matrix. The method is applied to a set of biomass data for benthic macrofauna from two Danish estuaries. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a regression model considering the modified Weibull distribution. This distribution can be used to model bathtub-shaped failure rate functions. Assuming censored data, we consider maximum likelihood and Jackknife estimators for the parameters of the model. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and we also present some ways to perform global influence. Besides, for different parameter settings, sample sizes and censoring percentages, various simulations are performed and the empirical distribution of the modified deviance residual is displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended for a martingale-type residual in log-modified Weibull regression models with censored data. Finally, we analyze a real data set under log-modified Weibull regression models. A diagnostic analysis and a model checking based on the modified deviance residual are performed to select appropriate models. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, regression models are evaluated for grouped survival data when the effect of censoring time is considered in the model and the regression structure is modeled through four link functions. The methodology for grouped survival data is based on life tables, and the times are grouped in k intervals so that ties are eliminated. Thus, the data modeling is performed by considering the discrete models of lifetime regression. The model parameters are estimated by using the maximum likelihood and jackknife methods. To detect influential observations in the proposed models, diagnostic measures based on case deletion, which are denominated global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to those measures, the local influence and the total influential estimate are also employed. Various simulation studies are performed and compared to the performance of the four link functions of the regression models for grouped survival data for different parameter settings, sample sizes and numbers of intervals. Finally, a data set is analyzed by using the proposed regression models. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A four-parameter extension of the generalized gamma distribution capable of modelling a bathtub-shaped hazard rate function is defined and studied. The beauty and importance of this distribution lies in its ability to model monotone and non-monotone failure rate functions, which are quite common in lifetime data analysis and reliability. The new distribution has a number of well-known lifetime special sub-models, such as the exponentiated Weibull, exponentiated generalized half-normal, exponentiated gamma and generalized Rayleigh, among others. We derive two infinite sum representations for its moments. We calculate the density of the order statistics and two expansions for their moments. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is obtained. Finally, a real data set from the medical area is analysed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Joint generalized linear models and double generalized linear models (DGLMs) were designed to model outcomes for which the variability can be explained using factors and/or covariates. When such factors operate, the usual normal regression models, which inherently exhibit constant variance, will under-represent variation in the data and hence may lead to erroneous inferences. For count and proportion data, such noise factors can generate a so-called overdispersion effect, and the use of binomial and Poisson models underestimates the variability and, consequently, incorrectly indicate significant effects. In this manuscript, we propose a DGLM from a Bayesian perspective, focusing on the case of proportion data, where the overdispersion can be modeled using a random effect that depends on some noise factors. The posterior joint density function was sampled using Monte Carlo Markov Chain algorithms, allowing inferences over the model parameters. An application to a data set on apple tissue culture is presented, for which it is shown that the Bayesian approach is quite feasible, even when limited prior information is available, thereby generating valuable insight for the researcher about its experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leaf wetness duration (LWD) models based on empirical approaches offer practical advantages over physically based models in agricultural applications, but their spatial portability is questionable because they may be biased to the climatic conditions under which they were developed. In our study, spatial portability of three LWD models with empirical characteristics - a RH threshold model, a decision tree model with wind speed correction, and a fuzzy logic model - was evaluated using weather data collected in Brazil, Canada, Costa Rica, Italy and the USA. The fuzzy logic model was more accurate than the other models in estimating LWD measured by painted leaf wetness sensors. The fraction of correct estimates for the fuzzy logic model was greater (0.87) than for the other models (0.85-0.86) across 28 sites where painted sensors were installed, and the degree of agreement k statistic between the model and painted sensors was greater for the fuzzy logic model (0.71) than that for the other models (0.64-0.66). Values of the k statistic for the fuzzy logic model were also less variable across sites than those of the other models. When model estimates were compared with measurements from unpainted leaf wetness sensors, the fuzzy logic model had less mean absolute error (2.5 h day(-1)) than other models (2.6-2.7 h day(-1)) after the model was calibrated for the unpainted sensors. The results suggest that the fuzzy logic model has greater spatial portability than the other models evaluated and merits further validation in comparison with physical models under a wider range of climate conditions. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, maize has become one of the main alternative crops for the autumn winter growing season in the central-western and southeastern regions of Brazil. However, water deficits, sub-optimal temperatures and low solar radiation levels are common problems that are experienced during this growing season by local farmers. One methodology to assess the impact of variable weather conditions on crop production is the use of crop simulation models. The goal of this study was to evaluate the effect of climate variability on maize yield for a subtropical region of Brazil. Specific objectives for this study were (1) to analyse the effect of El Nino Southern Oscillation (ENSO) on precipitation and air temperature for four locations in the state of Sao Paulo and (2) to analyse the impact of ENSO on maize grown off-season for the same four locations using a crop simulation model. For each site, historical weather data were categorised as belonging to one of three phases of ENSO: El Nino (warm sea surface temperature anomalies in the Pacific), La Nina (cool sea surface temperature anomalies) or neutral, based on an index derived from observed sea surface temperature anomalies. During El Nino, there is a tendency for an increase in the rainfall amount during May for the four selected locations, and also during April, mainly in three of the locations, resulting in an increase in simulated maize yield planted between February 15 and March 15. In general, there was a decrease in the simulated yield for maize grown off-season during neutral years. This study showed how a crop model can be used to assess the impact of climate variability on the yield of maize grown off-season in a subtropical region of Brazil. The outcomes of this study can be very useful for both policy makers and local farmers for agricultural planning and decision making. Copyright (C) 2009 Royal Meteorological Society