143 resultados para short-day effect
Resumo:
Background: Matrix metalloproteinase (MMP) inhibitors reduce dentine erosion. This in vitro study evaluated the effect of the supplementation of soft drinks with green tea extract, a natural inhibitor of MMPs, on their erosive potential against dentine. Methods: For each drink tested (Coca-Cola (TM), Kuat (TM) guarana, Sprite (TM) and light Coca-Cola (TM)), 40 dentine specimens were divided into two subgroups differing with respect to supplementation with green tea extract at 1.2% (OM24 (R), 100% Camellia sinensis leaf extract, containing 30 +/- 3% of catechin; Omnimedica, Switzerland) or not (control). Specimens were subjected to four pH cycles, alternating de-and remineralization in one day. For each cycle, samples were immersed in pure or supplemented drink (10 minutes, 30 mL per block) and in artificial saliva (60 minutes, 30 mL per block) at 37 degrees C, under agitation. Dentine alterations were determined by profilometry (mu m). Data were analysed by two-way ANOVA and Bonferroni`s test (p < 0.05). Results: A significant difference was observed among the drinks tested with Sprite (TM) leading to the highest surface loss and light Coca-Cola (TM) to the lowest. Supplementation with green tea extract reduced the surface loss by 15% to 40% but the difference was significant for Coca-Cola (TM) only. Conclusions: Supplementation of soft drinks with green tea extract might be a viable alternative to reduce their erosive potential against dentine.
Resumo:
It has been suggested that fluoride products are able to reduce erosive tooth wear. Thus, the purpose of this in vitro study was to evaluate the effect of dentifrices with different fluoride concentrations as well as of a low-fluoridated dentifrice supplemented with trimetaphosphate (TMP) on enamel erosion and abrasion. One hundred twenty bovine enamel blocks were assigned to the following experimental dentifrices: placebo, 1,100 mu g F/g, 500 mu g F/g plus 3% TMP and 5,000 mu g F/g. The groups of enamel blocks were additionally subdivided into conditions of erosion (ERO) and of erosion plus abrasion (ERO + ABR). For 7 days, the blocks were subjected to erosive challenges (immersion in Sprite (R) 4 times a day for 5 min each time) followed by a remineralizing period (immersion in artificial saliva between erosive challenges for 2 h). After each erosive challenge, the blocks were exposed to slurries of the dentifrices (10 ml/sample for 15 s). Sixty of the blocks were additionally abraded by brushing using an electric toothbrush (15 s). The alterations of the enamel were quantified using the Knoop hardness test and profilometry (measurements in micrometers). The data were analyzed using a 2-way ANOVA test followed by a Bonferroni correction (p < 0.05). In in vitro conditions, the 5,000 mu g F/g and 500 mu g F/g plus 3% TMP dentifrices had a greater protective effect when compared with the 1,100 mu g F/g dentifrice, under both ERO and ERO + ABR conditions. The results suggest that dentifrices alone are not capable of completely inhibiting tooth wear. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
It is known that some metal salts can inhibit matrix metalloproteinase (MMP) activity, but the effect of iron has not been tested yet. On the other hand, it has recently been suggested that MMP inhibition might influence dentine erosion. Based on this, the aims of this study were: (1) to test in vitro the effect of FeSO(4) on MMP-2 and -9 activity, and (2) to evaluate in situ the effect of FeSO(4) gel on dentine erosion. MMP-2 and -9 activities were analysed zymographically in buffers containing FeSO(4) in concentrations ranging between 0.05 and 1.5 mmol/l or not. Volunteers (n = 10) wore devices containing bovine dentine blocks (n = 60) previously treated with the following gel treatments: FeSO(4) (1 mmol/l FeSO(4)), F (NaF 1.23%; positive control) and placebo (negative control). The gels were applied once and removed after 1 min. Erosion was performed extraorally with Coca-Cola 4 times per day for 5 min over 5 days. Dentine wear was evaluated by profilometry. The data were analysed by Kruskal-Wallis and Dunn`s tests (p < 0.05). FeSO(4) inhibited both MMP-2 (IC(50) = 0.75 mmol/l) and MMP-9 (IC(50) = 0.50 mmol/l) activities. In the in situ experiment, the mean wear (+/- SD) found for the F gel (0.79 8 +/- 0.08 mu m) was significantly reduced in more than 50% when compared to the placebo gel (1.77 +/- 0.33 mu m), but the FeSO(4) gel completely inhibited the wear (0.05 +/- 0.02 mu m). Since FeSO(4) was able to inhibit MMP in vitro, it is possible that the prevention of dentine wear by the FeSO(4) gel in situ might be due to MMP inhibition, which should be investigated in further studies. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Objective: This study aimed to compare the effects 0.5% and 1% sodium, amine and stannous fluoride at different pH on enamel erosion in vitro. Methods: Bovine enamel samples were submitted to a cyclic de- and remineralisation for 3 days. Each day, the samples were exposed for 120 min to pooled human saliva and subsequently treated with one of the fluoride solutions for 3 min: amine fluoride (AmF, 0.5% and 1% F(-)), sodium fluoride (NaF, 0.5% and 1% F(-)), each at pH 3.9 and 7.0, and stannous fluoride (SnF(2), 0.5% and 1% F-), at pH: 3.9. Additionally, two groups were treated with fluoride-free placebo solutions (pH: 3.9 and 7.0) and one group served as control (no fluoridation). Ten specimens each group were inserted in a so-called artificial mouth and eroded six times daily with hydrochloric acid (pH 2.6) for 90 s each intermitted by exposure to artificial saliva (1 h). After 3 days, enamel loss was analyzed profilometrically and evaluated statistically by ANOVA. Results: Only the acidic 0.5% and 1% SnF(2) and 1% AmF solutions were able to reduce erosive enamel loss significantly, while all other solutions and placebos did not differ significantly from the control. Between the acidic SnF(2) and the 1% AmF solutions no significant differences could be detected. Conclusion: At the same concentrations, acidic SnF(2) and AmF may be more effective than NaF to protect enamel against erosion. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This in vitro study evaluated the effect of a prolonged erosive pH cycling on the superficial microhardness change (SMHC) and the erosive wear of different restorative materials. Eighty enamel specimens with prepared cavities of 1.5 x 1.5 mm were randomly divided into eight groups according to the restorative materials used for the fillings (RMGI - resin-modified glass-ionomer, CGI - conventional glass-ionomer, CR- composite resin, A - amalgam) and immersion media used (ERO - erosive medium or SAL - artificial saliva). During 35 days, half of the specimens were immersed in a cola drink (ERO), for 5 min, three times a day, and they remained in SAL between the erosive cycles. The other half of the specimens was immersed in SAL only, for the entire experimental period (control). Data were tested for significant differences by anova and Tukey`s tests (P < 0.05). Scanning electron microscopy images were made to illustrate the enamel erosive wear and restorative materials alterations. The mean SMHC (%) and mean erosive wear (mu m) of the materials were: RMGI-ERO (30/0.5); CGI-ERO (37/0.5); CR-ERO (-0.3/0.3); A-ERO (-4/0.3); RMGI-SAL (4/0.4); CGI-SAL (-6/0.4); CR-SAL (-3/0.2) and A-SAL (2/0.4). Scanning electron microscopy images showed pronounced enamel erosive wear on groups submitted to erosive pH cycling when compared with groups maintained in saliva. In conclusion, the prolonged pH cycling promoted significantly higher alterations (SMHC and erosive wear) on the glass-ionomer cements than the CR and amalgam.
Resumo:
Objective: This in situ/ex vivo study assessed the effect of titanium tetrafluoride (TiF4) on permanent human enamel subjected to erosion. Design: Ten volunteers took part in this study performed in two phases. In the first phase (ERO), they wore acrylic palatal appliances containing two enamel blocks, divided into two rows: TiF4 (F) and no-TiF4 (no-F). During the 1st day, the formation of a salivary pellicle was allowed. In the 2nd day, the TiF4 solution was applied on one row (ERO + F), whereas on the other row no treatment was performed (ERO + no-F). From 3rd until 7th day, the blocks were subjected to erosion, 4x per day. In the 2nd phase (no-ERO), the volunteers wore acrylic palatal appliances containing one enamel block, during 2 days, to assess the effect of TiF4 only (no-ERO + F). Enamel alterations were determined using profilometry (wear), microhardness (%SMHC) tests, scanning electron microscope and microprobe analysis. The %SMHC and wear were tested using ANOVA and Tukey`s post hoc tests (p < 0.05). Results: The mean of %SMHC and wear ( mu m) values ( +/- S.D.) were, respectively: ERO + F -73.32 +/- 5.16(A)/2.40 +/- 0.60(a); ERO + no-F -83.49 +/- 4.59B/1.17 +/- 0.48(b) and no-ERO + F -67.92 +/- 6.16(A)/0.21:E 0.09(c). In microscope analysis, the no-F group showed enamel with honeycomb appearance. For F groups, it was observed a surface coating with microcracks. The microprobe analysis revealed the presence of the following elements (%) in groups ERO + F, ERO + no-F and no-ERO + F, respectively: Ca (69.9, 72.5, 66.25); P (25.9, 26.5, 26.06); Ti (3.0, 0, 5.93). Conclusions: The TiF4 was unable to reduce dental erosion. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This in vitro study evaluated the effect of erosive pH cycling on the percentage of surface micro-hardness change (%SMHC) and wear of different restorative materials and bovine enamel restored with these materials. Eighty enamel specimens were randomly divided into eight groups according to the restorative materials and immersion media used: GI/GV-resin-modifled glass-ionomer, GII/GVI-conventional glass-ionomer, GIII/GVII-resin composite and GIV/GVIII-amalgam. Over a period of seven days, groups GI to GIV were immersed in a cola drink (ERO) for 5 minutes, 3x/day and kept in artificial saliva between erosive cycles. Groups GV to GVIII were immersed in artificial saliva (SAL) throughout the entire experimental period (control). Data were tested for significant differences using ANOVA and Tukey`s tests (p < 0.05). For %SMHC, considering the restorative materials, no significant differences were detected among the materials and immersion media. Mean wear was higher for the resin modified glass ionomer cement when compared to conventional cement, but those materials did not significantly differ from the others. For enamel analyses, erosive pH cycling promoted higher wear and %SMHC compared to saliva. There were no significant differences in wear and %SMHC of enamel around the different restorative materials, regardless of the distance from the restorative material (50, 150 or 300 mu m). In conclusion, there were only subtle differences among the materials, and these differences were not able to protect the surrounding enamel from erosion.
Resumo:
This in vitro study assessed the effect of an experimental 4% TiF(4) varnish compared to commercial NaF and NaF/CaF(2) varnishes and 4% TiF(4) solution on enamel erosion. For this, 72 bovine enamel specimens were randomly allocated to the following treatments: NaF varnish (2.26% F), NaF/CaF(2) varnish (5.63% F), 4% TiF(4) varnish (2.45% F), F-free placebo varnish, 4% TiF(4) solution (2.45% F) and control (not treated). The varnishes were applied in a thin layer and removed after 6 h. The solution was applied to the enamel surface for 1 min. Then, the specimens were alternately de- and remineralized (6 times/day) in an artificial mouth for 5 days at 37 degrees C. Demineralization was performed with the beverage Sprite (1 min, 3 ml/min) and remineralization with artificial saliva (day: 59 min, 0.5 ml/min; during the night: 0.1 ml/min). The mean daily increment of erosion and the cumulative erosion data were tested using ANOVA and ANCOVA, respectively, followed by Tukey`s test (alpha = 0.05). The mean daily erosion increments and cumulative erosion (micrometers) were significantly less for the TiF(4) varnish (0.30 +/- 0.11/0.65 +/- 0.75) than for the NaF varnish (0.58 +/- 0.11/1.47 +/- 1.07) or the NaF/CaF(2) varnish (0.62 +/- 0.10/1.68 +/- 1.17), which in turn showed significantly less erosion than the placebo varnish (0.78 +/- 0.12/2.05 +/- 1.43), TiF(4) solution (0.86 +/- 0.11/2.05 +/- 1.49) and control (0.77 +/- 0.16/2.06 +/- 1.49). In conclusion, the TiF(4) varnish seems to be a promising treatment to reduce enamel loss under mild erosive conditions. Copyright (C) 2008 S. Karger AG, Basel.
Resumo:
Objective: As resin-modified glass-ionomer cement (RMGIC) is an adhesive material, its association to dentin bonding agents (DBAs) was previously proposed. This study investigated the adjunctive behavior of an RMGIC with etch-and-rinse bonding systems under in situ/ex vivo cariogenic challenge. Method and Materials: Bovine enamel blocks (3 3 2 mm) were randomly assigned to group VP, Vitremer + its own primer (3M ESPE); group VSB, Vitremer + Single Bond (3M ESPE); and group VPB, Vitremer + Prime & Bond 2.1 (Dentsply). Two blocks of each group were randomly placed in an acrylic palatal appliance, so each appliance included six blocks. Volunteers (n = 10) wore these appliances according to given instructions to promote a sucrose challenge eight times/day for 15 days. After this period, the blocks were removed from the devices and cleaned, and demineralization was assessed through longitudinal microhardness analysis (Knoop indenter, 25 g/5 s). Data were submitted to three-way ANOVA and Tukey test (P < .05). Results: No treatment was able to completely avoid demineralization. All materials showed a statistically significant difference in mineral loss when the microhardness on the outer enamel was compared with deeper regions (P < .05). Conclusion: Association of the tested RMGICs with etch-and-rinse DBAs did not seem to be more beneficial against caries than the conventional treatment with RMGIC. (Quintessence Int 2010; 41: e192-e199)
Resumo:
Objective. The aim of this study was to evaluate the precision of working length determination of 3 electronic apex locators (EALs): Root ZX, RomiApex D-30, and Ipex at 0.0 mm, at the apical foramen (AF), and at 1.0 mm short of the AF. Methodology. Thirty-eight mandibular premolars had their real lengths previously determined. Electronic measurements were determined at 1.0 mm, followed by measurements at 0.0 mm, performed in triplicate. Results. Precision of devices at 1.0 mm and 0.0 mm were: 94.7% and 97.4%, respectively (Root ZX); 78.9% and 97.4% (RomiApex D-30); and 76.3% and 97.4% (Ipex). Although no statistical differences were observed between the EALs at 0.0, at 1.0 mm Root ZX performed significantly better than the others. Conclusion. The EALs had acceptable precision when measuring the working length at the AF. However, when used at levels short of the AF, only Root ZX did not suffer a significant negative effect on precision. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110:e57-e61)
Resumo:
Objective: The aim of this study was to evaluate, in vitro, the effect of an experimental varnish containing iron on the dissolution of bovine enamel by carbonated beverage. Methods: Eighty specimens were randomly allocated to four groups (n = 20 per group), according to the following treatments: Fe varnish (FeV, 10 mmoL/L Fe), F varnish (FV, 2.71% F), placebo varnish (PV) and control (not treated, NT). The varnishes were applied in a thin layer and removed after 6 h. Then, the samples were submitted to six cycles, alternating re- and demineralisation (only 1 day). Demineralisation was performed with the beverage Coca-Cola (R) (10 min, 30 mL/block) and remineralisation with artificial saliva for I h. In order to determine the amount of enamel dissolved, the wear was analysed by profilometry. Data were analysed by ANOVA and Tukey`s test (p < 0.05). Results: The mean wear (+/- S.E.) was significantly lesser for the FeV (0.451 +/- 0.018 mu m) when compared to the other treatments. The FV caused significantly less wear (0.554 +/- 0.022 mu m) when compared to PV (0.991 +/- 0.039 mu m) and NT (1.014 +/- 0.033), which did not significantly differ from each other. Conclusions: The results suggest that the iron varnish can interfere with the dissolution of dental enamel in the presence of acidic beverages. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: This in situ study evaluated the effect of an erosive challenge on different restorative materials and on enamel restored with these materials, as well as the ability of these materials to protect the adjacent enamel against erosion. Methods: Ten volunteers wore palatal devices with eight bovine enamel blocks, randomly selected and distributed into two vertical rows, corresponding to the following groups: GI/GV, resin-modified glass ionomer; GII/GVI, conventional glass ionomer; GIII/GVII, composite resin; GIV/GVIII, amalgam. one row (corresponding to groups I-IV) was immersed in a cola drink and the other row (corresponding to groups V-VIII) was subjected to saliva only. The palatal device was continuously worn for 7 days and only half of the appliance (groups I-IV) was immersed in the soft drink (Coca-Cola (R), 150 mL) for 5 min, three times a day. The study variables comprised the wear (profilometry, mu m) and the percentage of surface microhardness change (%SMHC). Data were tested for significant differences by two-way ANOVA and Tukey`s tests (p < 0.05). Results: Considering the restorative materials, for %SMHC and wear, there were no differences among the materials and between the saliva and the erosive challenge. For enamel analyses, the erosive challenge promoted a higher wear and %SMHC of the enamel than did the saliva. There were no significant differences in wear and %SMHC of the enamel adjacent to the different restorative materials. Conclusion: This research data suggest that there is little %SMHC and wear of the studied restorative materials and none of them had a preventive effect against erosion on adjacent enamel, which showed a pronounced wear. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: This in vitro study aimed to analyse the effect of a single application of TiF(4) and NaF varnishes and solutions to protect against dentin erosion. Methods: Bovine root dentin samples were pre-treated with NaF-Duraphat varnish (2.26%F, pH 4.5), NaF/CaF(2)-Duofluorid varnish (5.63%F, pH 8.0), NaF-experimental varnish (2.45%F, pH 4.5), TiF(4)-experimental varnish (2.45%F, pH 1.2), NaF solution (2.26%F, pH 4.5), TiF(4) solution (2.45%F, pH 1.2) and placebo varnish (pH 5.0, no-F varnish control). Controls remained untreated. Ten samples in each group were then subjected to an erosive demineralisation (Sprite Zero, 4x 90 s/day) and remineralisation (artificial saliva, between the erosive cycles) cycling for S days. Dentin loss was measured profilometrically after pretreatment and after 1, 3 and 5 days of de-remineralisation cycling. The data were statistically analysed by two-way ANOVA and Bonferroni`s post hoc test (p < 0.05). Results: After pre-treatment, TiF(4) solution significantly induced surface loss (1.08 +/- 0.53 mu m). Only Duraphat reduced the dentin loss overtime, but it did not significantly differ from placebo varnish (at 3rd and 5th days) and TiF(4) varnish (at 3rd day). Conclusions: Duraphat varnish seems to be the best option to partially reduce dentin erosion. However, the maintenance of the effects of this treatment after successive erosive challenges is limited. (C) 2009 Elsevier Ltd. All rights reserved.
Effect of Sodium Cyclamate on the Rat Fetal Exocrine Pancreas: a Karyometric and Stereological Study
Resumo:
The cyclamate, a sweetner substance derived from N-cyclo-hexyl-sulfamic acid, is largely utilized as a non-caloric artificial edulcorant in foods and beverages as well as in the pharmaceutical industry. The objective of this study was to evaluate karyometric and stereological alterations in the rat fetal pancreas resulting from the intraperitoneal administration of sodium cyclamate. The exocrine pancreas of ten fetuses of rats were evaluated, five treated and five controls chosen at random, in which five rats that received from the 10th to 14th days of pregnancy an intraperitoneal daily injection of sodium cyclamate at 60 mg/Kg of body weight during 5 days. At the 20th day of gestation, the animals were removed and weighed, as were their placentas; the length of the umbilical cords also were measured. After the laboratory processing, semi-seriated 6mm cuts stained with haematoxyline and cosine were performed. In seven karyometric parameters (major, minor, and medium diameters, volume, area, perimeter, and volume-area ratio), the increase was statistically significant in the treated group when compared with control group. Stereological parameters showed in the treated group a significant increase in the cellular volume and a significant reduction in the numerical cellular density. These results showed that the sodium cyclamate in pregnant rats led to retardation of fetal development and hypertrophy in the exocrine pancreas of the rat fetuses.
Resumo:
Non-steroidal anti-inflammatory drugs (NSAIDs) have been used for pain relief in orthodontics, but clinical studies reported that they may reduce tooth movement (TM). By other side, TM seems to activate brain structures related to nociception, but the effects of NSAIDs in this activation have not been studied yet. We analyzed the effect of short-term treatment with acetaminophen or celecoxib in the separation of rat upper incisors, as well as in neuronal activation of the spinal trigeminal nucleus, following tooth movement. Thirty rats (400-420 g) were pretreated through oral gavage (1 ml/dose)with acetaminophen (200 mg/kg), celecoxib (50 mg/kg) or vehicle (carboxymethylcellulose 0.4%). After 30 min, they received an activated (30 g) orthodontic appliance for TM. In controls, this appliance was immediately removed after its introduction. Rats received ground food, and every 12 h, one of the drugs or vehicle. After 48 h, they were anesthetized, maxilla was radiographed, and were perfused with 4% paraformaldehyde. Brains were further processed for Fos immunohistochemistry. TM induced incisor distalization (p < 0.05) and neuronal activation of the spinal trigeminal nucleus. Treatment with both drugs did not affect tooth movement, but reduced c-fos expression in the caudalis subnucleus. No changes in c-fos expression were seen in the oralis and interpolaris subnuclei. We conclude that neither celecoxib nor acetaminophen seems to affect tooth movement, when used for 2 days, but both drugs are able to reduce the activation of brain structures related to nociception. Short-term treatment with celecoxib, thus, may be a therapeutic alternative to acetaminophen when the latter is contra indicated. (C) 2009 Elsevier Inc. All rights reserved.