99 resultados para planning (artificial intelligence)
Resumo:
Modern medical imaging techniques enable the acquisition of in vivo high resolution images of the vascular system. Most common methods for the detection of vessels in these images, such as multiscale Hessian-based operators and matched filters, rely on the assumption that at each voxel there is a single cylinder. Such an assumption is clearly violated at the multitude of branching points that are easily observed in all, but the Most focused vascular image studies. In this paper, we propose a novel method for detecting vessels in medical images that relaxes this single cylinder assumption. We directly exploit local neighborhood intensities and extract characteristics of the local intensity profile (in a spherical polar coordinate system) which we term as the polar neighborhood intensity profile. We present a new method to capture the common properties shared by polar neighborhood intensity profiles for all the types of vascular points belonging to the vascular system. The new method enables us to detect vessels even near complex extreme points, including branching points. Our method demonstrates improved performance over standard methods on both 2D synthetic images and 3D animal and clinical vascular images, particularly close to vessel branching regions. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The notion of knowledge artifact has rapidly gained popularity in the fields of general knowledge management and more recently knowledge-based systems. The main goal on this paper is to propose and discuss a methodology for the design and implementation of knowledge-based systems founded on knowledge artifacts. We advocate that the systems built according to this methodology can be effective to convey the flow of knowledge between different communities of practice. Our methodology has been developed from the ground up, i.e. we have built some concrete systems based on the abstract notion of knowledge artifact and synthesized our methodology based on reflections upon our experiences building these systems. In this paper, we also describe the most relevant systems we have built and how they have guided us to the synthesis of our proposed methodology. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Managing software maintenance is rarely a precise task due to uncertainties concerned with resources and services descriptions. Even when a well-established maintenance process is followed, the risk of delaying tasks remains if the new services are not precisely described or when resources change during process execution. Also, the delay of a task at an early process stage may represent a different delay at the end of the process, depending on complexity or services reliability requirements. This paper presents a knowledge-based representation (Bayesian Networks) for maintenance project delays based on specialists experience and a corresponding tool to help in managing software maintenance projects. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In chemical analyses performed by laboratories, one faces the problem of determining the concentration of a chemical element in a sample. In practice, one deals with the problem using the so-called linear calibration model, which considers that the errors associated with the independent variables are negligible compared with the former variable. In this work, a new linear calibration model is proposed assuming that the independent variables are subject to heteroscedastic measurement errors. A simulation study is carried out in order to verify some properties of the estimators derived for the new model and it is also considered the usual calibration model to compare it with the new approach. Three applications are considered to verify the performance of the new approach. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
The main objective of this paper is to study a logarithm extension of the bimodal skew normal model introduced by Elal-Olivero et al. [1]. The model can then be seen as an alternative to the log-normal model typically used for fitting positive data. We study some basic properties such as the distribution function and moments, and discuss maximum likelihood for parameter estimation. We report results of an application to a real data set related to nickel concentration in soil samples. Model fitting comparison with several alternative models indicates that the model proposed presents the best fit and so it can be quite useful in real applications for chemical data on substance concentration. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
In this paper, we present a Bayesian approach for estimation in the skew-normal calibration model, as well as the conditional posterior distributions which are useful for implementing the Gibbs sampler. Data transformation is thus avoided by using the methodology proposed. Model fitting is implemented by proposing the asymmetric deviance information criterion, ADIC, a modification of the ordinary DIC. We also report an application of the model studied by using a real data set, related to the relationship between the resistance and the elasticity of a sample of concrete beams. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
The objective of this article is to find out the influence of the parameters of the ARIMA-GARCH models in the prediction of artificial neural networks (ANN) of the feed forward type, trained with the Levenberg-Marquardt algorithm, through Monte Carlo simulations. The paper presents a study of the relationship between ANN performance and ARIMA-GARCH model parameters, i.e. the fact that depending on the stationarity and other parameters of the time series, the ANN structure should be selected differently. Neural networks have been widely used to predict time series and their capacity for dealing with non-linearities is a normally outstanding advantage. However, the values of the parameters of the models of generalized autoregressive conditional heteroscedasticity have an influence on ANN prediction performance. The combination of the values of the GARCH parameters with the ARIMA autoregressive terms also implies in ANN performance variation. Combining the parameters of the ARIMA-GARCH models and changing the ANN`s topologies, we used the Theil inequality coefficient to measure the prediction of the feed forward ANN.
Resumo:
This paper describes a new module of the expert system SISTEMAT used for the prediction of the skeletons of neolignans by (13)C NMR, (1)H NMR and botanical data obtained from the literature. SISTEMAT is composed of MACRONO, SISCONST, C13MACH, H1MACH and SISOCBOT programs, each analyzing data of the neolignan in question to predict the carbon skeleton of the compound. From these results, the global probability is computed and the most probable skeleton predicted. SISTEMAT predicted the skeletons of 75% of the 20 neolignans tested, in a rapid and simple procedure demonstrating its advantage for the structural elucidation of new compounds.
Resumo:
This paper reports an expert system (SISTEMAT) developed for structural determination of diverse chemical classes of natural products, including lignans, based mainly on 13C NMR and 1H NMR data of these compounds. The system is composed of five programs that analyze specific data of a lignan and shows a skeleton probability for the compound. At the end of analyses, the results are grouped, the global probability is computed, and the most probable skeleton is exhibited to the user. SISTEMAT was able to properly predict the skeletons of 80% of the 30 lignans tested, demonstrating its advantage during the structural elucidation course in a short period of time.