173 resultados para pharmacy services on the wards
Resumo:
Rabies is a viral zoonotic infectious disease that affects mammals and is caused by genotypes/species of the Lyssavirus genus (Rhabdoviridae, Mononegavirales), with the genotype 1 (classic rabies virus - RABV) being the most prevalent. Despite continuous efforts, rabies is still an incurable disease that causes thousands of deaths amongst humans worldwide. Due to a wide range of hosts and the different evolutionary paths of RABV in each host, several host-specific variants have arisen in an ongoing process. The result of RABV replication in nervous tissues may lead to two opposite clinical outcomes, i.e., paralytic/dumb form and encephalitic/furious one. The paralytic form creates dead-end hosts mainly amongst herbivores, while the furious form of the disease allows for augmented transmission when manifested in gregarious carnivores, as their natural aggressive behavior is accentuated by the disease itself. The aim of this article is to propose a theoretical model intended to explore how the rabies virus intrinsically modulates the immune system of different host classes, the pathological changes that the virus causes in these animals and how these elements favor its own perpetuation in nature, thus providing a basis for better prediction of the patterns this disease may present.
Resumo:
Identification of animals that are decomposing or have been run over or burnt and cannot be visually identified is a problem in the surveillance and control of infectious diseases. Many of these animals are wild and represent a valuable source of information for epidemiologic research as they may be carriers of an infectious agent. This article discusses the results obtained using a method for identifying mammals genetically by sequencing their mitochondrial DNA control region. Fourteen species were analyzed and identified. These included the main reservoirs and transmitters of rabies virus, namely, canids, chiroptera and primates. The results prove that this method of genetic identification is both efficient and simple and that it can be used in the surveillance of infectious diseases which includes mammals in their epidemiologic cycle, such as rabies.
Resumo:
Anopheles (Nyssorhynchus) oswaldoi (Peryassú) compreende complexo de espécies crípticas na América do Sul. Espécimes de duas localidades situadas no leste da Mata Atlântica foram empregados para caracterizar morfologica e molecularmente An. oswaldoi s.s. Foram observadas e avaliadas variações na forma do ápice do edeago da genitália masculina de espécimes de Anopheles (Nyssorhynchus) oswaldoi s.s. do Vale do Ribeira, Mata Atlântica, estado de São Paulo, e nas sequências do segundo espaçador interno transcrito (ITS2). Os espécimes com edeagos distintos apresentaram seqüências idênticas de ITS2. Os tipos distintos de edeago encontrados nos exemplares do Vale do Ribeira, Mata Atlântica, foram ilustrados
Resumo:
Snacks made by extrusion cooking of pure amaranth flour or mixtures of 80 per cent amaranth flour and 20 per centcorn grits or chickpea flour were developed to replace the traditional commercial ones with improved nutritional and functional quality. Pure amaranth snacks and the blended ones were flavored with salty and sweet flavors and evaluated for acceptability using a 9-point hedonic scale. The good acceptance observed for either salty or sweet flavored snacks indicated that they have characteristics to compete with similar commercial products. Acceptability of salty snacks increased with storage time at room temperature in BOPP (polypropylene bi-guided) packs whereas slightly decreased for the sweet ones. This type of storage proved to be very efficient for the conservation of the salty product and also suitable for the sweet ones
Resumo:
Purpose - This paper aims to evaluate the association between the a-tocopherol with the levels of serum anti-oxLDL autoantibodies and the risk markers for cardiovascular disease. Design/methodology/approach - A normolipidemic control group (n=30) and a hypercholesterolemic group (n=33) were used. Plasma lipid profile (colorimetric method), anti-oxLDL autoantibodies (ELISA) and a-tocopherol (HPLC) were analysed. Findings - The a-tocopherol (ß=-0.714; p=0.001) is negatively associated with anti-oxLDL autoantibodies in serum and with other risk markers for cardiovascular disease (BMI, WC, total cholesterol, LDL-c) and positively associated with HDL-c. Originality/value - Oxidized low density lipoprotein (oxLDL) and their autoantibodies are increased in subjects with hypercholesterolemia. The a-tocopherol can influence the levels of serum anti-oxLDL autoantibodies
Resumo:
Background and objective: The purpose of the present study was to evaluate the effects of a nap at work on the sleepiness of 12-hour, night-shift (registered and assistant) nursing personnel.Methods: Twelve nurses filled out daily logs, the Karolinska Sleepiness Scale (KS), and wore wrist actigraphs for two periods of four continuous days.Results: Mean nap duration during the night shifts was 138.3 (SD+39.8) minutes. The mean sleepiness level assessed by the KS score was lower, 3.3 (SD±1.6), when the nap was taken during the first span (00:01 - 03:00h) of the night shift, compared with 6.6 (SD±1.0) when there was no nap. The mean sleepiness level assessed by the KS score was also lower, 3.6 (SD±0.9), when the nap was taken during the second span (03:01 - 06:00h) of the night shift, compared with 7.0 (SD±1.1) when there was no nap. Thus, napping either during the first or second part of the night shift reduces sleepiness of 12-hour, night-shift nursing personnel. Moreover, the mean duration of the first sleep episode after night work was longer in those who did not nap than in those who did. Conclusions: The results of this study show that napping during the 12-hour, night-shift results in less sleepiness at work and less need for recovery sleep after work
Resumo:
Byrsonima basiloba A. Juss. species is a native arboreal type from the Brazilian ""cerrado"" (tropical American savanna), and the local population uses it to treat diseases, such as diarrhea and gastric ulcer. It belongs to the Malpighiaceae family, and it is commonly known as ""murici."" Considering the popular use of B. basiloba derivatives and the lack of pharmacological potential studies regarding this vegetal species, the mutagenic and antimutagenic effect of methanol (MeOH) and chloroform extracts were evaluated by the Ames test, using strains TA97a, TA98, TA100, and TA102 of Salmonella typhimurium. No mutagenic activity was observed in any of the extracts. To evaluate the antimutagenic potential, direct and indirect mutagenic agents were used: 4 nitro-o-phenylenediamine, sodium azide, mitomycin C, aflatoxin B(1), benzo[a] pyrene, and hydrogen peroxide. Both the extracts evaluated showed antimutagenic activity, but the highest value of inhibition level (89%) was obtained with the MeOH extract and strain TA100 in the presence of aflatoxin B(1). Phytochemical analysis of the extracts revealed the presence of n-alkanes, lupeol, ursolic and oleanolic acid, (+)-catechin, quercetin- 3-O-alpha-L-arabinopyranoside, gallic acid, methyl gallate, amentoflavone, quercetin, quercetin-3-O-(2 ''-O-galloyl)-beta-D-galactopyranoside, and quercetin-3-O-(2 ''-O-galloyl)-alpha-L-arabinopyranoside.
Association between neuromuscular tests and kumite performance on the Brazilian Karate National Team
Resumo:
The aim of this study was to verify the relationship of strength and power with performance on an international level karate team during official kumite simulations. Fourteen male black belt karate athletes were submitted to anthropometric data collection and then performed the following tests on two different days: vertical jump test, bench press and squat maximum dynamic strength (1RM) tests. We also tested power production for both exercises at 30 and 60% 1RM and performed a kumite match simulation. Blood samples were obtained at rest and immediately after the kumite matches to measure blood lactate concentration. Karate players were separated by performance (winners vs. defeated) on the kumite matches. We found no significant differences between winners and defeated for strength, vertical jump height, anthropometric data and blood lactate concentration. Interestingly, winners were more powerful in the bench press and squat exercises at 30% 1RM. Maximum strength was correlated with absolute (30% 1RM r = 0.92; 60% 1RM r = 0.63) and relative power (30% 1RM r = 0.74; 60% 1RM r = 0.11, p > 0.05) for the bench press exercise. We concluded that international level karate players' kumite match performance are influenced by higher levels of upper and lower limbs power production.
Resumo:
The influence of annealing on the mechanical properties of high-silicon cast iron for three alloys with distinct chromium levels was investigated. Each alloy was melted either with or without the addition of Ti and Mg. These changes in the chemical composition and heat treatment aimed to improve the material's mechanical properties by inhibiting the formation of large columnar crystals, netlike laminae, precipitation of coarse packs of graphite, changing the length and morphology of graphite, and rounding the extremities of the flakes to minimize the stress concentration. For alloys with 0.07 wt.% Cr, the annealing reduced the impact resistance and tensile strength due to an enhanced precipitation of refined carbides and the formation of interdendritic complex nets. Annealing the alloys containing Ti and Mg led to a decrease in the mechanical strength and an increase in the toughness. Alloys containing approximately 2 wt.% Cr achieved better mechanical properties as compared to the original alloy. However, with the addition of Ti and Mg to alloys containing 2% Cr, the chromium carbide formation was inhibited, impairing the mechanical properties. In the third alloy, with 3.5 wt.% of Cr additions, the mechanical strength improved. The annealing promoted a decrease in both hardness and amount of iron and silicon complex carbides. However, it led to a chromium carbide formation, which influenced the mechanical characteristics of the matrix of the studied material.
Resumo:
This paper investigates the concept of piezoaeroelasticity for energy harvesting. The focus is placed on mathematical modeling and experimental validations of the problem of generating electricity at the flutter boundary of a piezoaeroelastic airfoil. An electrical power output of 10.7 mW is delivered to a 100 k load at the linear flutter speed of 9.30 m/s (which is 5.1% larger than the short-circuit flutter speed). The effect of piezoelectric power generation on the linear flutter speed is also discussed and a useful consequence of having nonlinearities in the system is addressed. (C) 2010 American Institute of Physics. [doi:10.1063/1.3427405]
Resumo:
We evaluated the performance of a novel procedure for segmenting mammograms and detecting clustered microcalcifications in two types of image sets obtained from digitization of mammograms using either a laser scanner, or a conventional ""optical"" scanner. Specific regions forming the digital mammograms were identified and selected, in which clustered microcalcifications appeared or not. A remarkable increase in image intensity was noticed in the images from the optical scanner compared with the original mammograms. A procedure based on a polynomial correction was developed to compensate the changes in the characteristic curves from the scanners, relative to the curves from the films. The processing scheme was applied to both sets, before and after the polynomial correction. The results indicated clearly the influence of the mammogram digitization on the performance of processing schemes intended to detect microcalcifications. The image processing techniques applied to mammograms digitized by both scanners, without the polynomial intensity correction, resulted in a better sensibility in detecting microcalcifications in the images from the laser scanner. However, when the polynomial correction was applied to the images from the optical scanner, no differences in performance were observed for both types of images. (C) 2008 SPIE and IS&T [DOI: 10.1117/1.3013544]
Resumo:
Uncertainties in damping estimates can significantly affect the dynamic response of a given flexible structure. A common practice in linear structural dynamics is to consider a linear viscous damping model as the major energy dissipation mechanism. However, it is well known that different forms of energy dissipation can affect the structure's dynamic response. The major goal of this paper is to address the effects of the turbulent frictional damping force, also known as drag force on the dynamic behavior of a typical flexible structure composed of a slender cantilever beam carrying a lumped-mass on the tip. First, the system's analytical equation is obtained and solved by employing a perturbation technique. The solution process considers variations of the drag force coefficient and its effects on the system's response. Then, experimental results are presented to demonstrate the effects of the nonlinear quadratic damping due to the turbulent frictional force on the system's dynamic response. In particular, the effects of the quadratic damping on the frequency-response and amplitude-response curves are investigated. Numerically simulated as well as experimental results indicate that variations on the drag force coefficient significantly alter the dynamics of the structure under investigation. Copyright (c) 2008 D. G. Silva and P. S. Varoto.
Resumo:
In this work, the effects of indenter tip roundness oil the load-depth indentation curves were analyzed using finite element modeling. The tip roundness level was Studied based on the ratio between tip radius and maximum penetration depth (R/h(max)), which varied from 0.02 to 1. The proportional Curvature constant (C), the exponent of depth during loading (alpha), the initial unloading slope (S), the correction factor (beta), the level of piling-up or sinking-in (h(c)/h(max)), and the ratio h(max)/h(f) are shown to be strongly influenced by the ratio R/h(max). The hardness (H) was found to be independent of R/h(max) in the range studied. The Oliver and Pharr method was successful in following the variation of h(c)/h(max) with the ratio R/h(max) through the variation of S with the ratio R/h(max). However, this work confirmed the differences between the hardness values calculated using the Oliver-Pharr method and those obtained directly from finite element calculations; differences which derive from the error in area calculation that Occurs when given combinations of indented material properties are present. The ratio of plastic work to total work (W(p)/W(t)) was found to be independent of the ratio R/h(max), which demonstrates that the methods for the Calculation of mechanical properties based on the *indentation energy are potentially not Susceptible to errors caused by tip roundness.
Resumo:
In this work, the effects of conical indentation variables on the load-depth indentation curves were analyzed using finite element modeling and dimensional analysis. A factorial design 2(6) was used with the aim of quantifying the effects of the mechanical properties of the indented material and of the indenter geometry. Analysis was based on the input variables Y/E, R/h(max), n, theta, E, and h(max). The dimensional variables E and h(max) were used such that each value of dimensionless Y/E was obtained with two different values of E and each value of dimensionless R/h(max) was obtained with two different h(max) values. A set of dimensionless functions was defined to analyze the effect of the input variables: Pi(1) = P(1)/Eh(2), Pi(2) = h(c)/h, Pi(3) = H/Y, Pi(4) = S/Eh(max), Pi(6) = h(max)/h(f) and Pi(7) = W(P)/W(T). These six functions were found to depend only on the dimensionless variables studied (Y/E, R/h(max), n, theta). Another dimension less function, Pi(5) = beta, was not well defined for most of the dimensionless variables and the only variable that provided a significant effect on beta was theta. However, beta showed a strong dependence on the fraction of the data selected to fit the unloading curve, which means that beta is especially Susceptible to the error in the Calculation of the initial unloading slope.
Resumo:
Despite countless use possibilities for bamboo, this material has two major disadvantages. One drawback is the low natural durability of most bamboo species due to presence of starch in their parenchyma cells. The other equally important drawback is the tendency bamboo has to present dimensional variations if subjected to environmental change conditions. In an attempt to minimize these inconveniences, strips (laths) of Dendrocalamus giganteus Munro were taken from different portions of the culm and subjected to several temperatures, namely 140 degrees C, 180 degrees C, 220 degrees C, 260 degrees C and 300 degrees C under laboratory conditions, at the ESALQ-USP college of agriculture. The thermal treatment process was conducted in noninert and inert atmospheres (with nitrogen), depending on temperature Specimens were then subjected to physicomechanical characterization tests in order to determine optimum thermal treatment conditions in which to preserve to the extent possible the original bamboo properties. Results revealed that there is an optimum temperature range, between 140 degrees and 220 degrees C, whereby thermally treated bamboo does not significantly lose its mechanical properties while at the same time showing greater dimensional stability in the presence of moisture.