138 resultados para ether derivative
Resumo:
A three-phase liquid-phase microextraction (LPME) method using porous polypropylene hollow fibre membrane with a sealed end was developed for the extraction of mirtazapine (MRT) and its two major metabolites, 8-hydroxymirtazapine (8-OHM) and demethylmirtazapine (DMR), from human plasma. The analytes were extracted from 1.0 mL of plasma, previously diluted and alkalinized with 3.0 mL 0.5 mol L-1 pH 8 phosphate buffer solution and supplemented with 15% sodium chloride (NaCl), using n-hexyl ether as organic solvent and 0.01 moL L-1 acetic acid solution as the acceptor phase. Haloperidol was used as internal standard. The chromatographic analyses were carried out on a chiral column, using acetonitrile-methanol-ethanol (98:1:1, v/v/v) plus 0.2% diethylamine as mobile phase, at a flow rate of 1.0 mL min(-1). Multi-reaction monitoring (MRM) detection was performed by mass spectrometry (MS-MS) using a triple-stage quadrupole and electrospray ionization interface operating in the positive ion mode. The mean recoveries were in 18.3-45.5% range with linear responses over the 1.25-125 ng mL(-1) concentration range for all enantiomers evaluated. The quantification limit (LOQ) was 1.25 ng mL(-1). Within-day and between-day assay precision and accuracy (2.5, 50 and 100 ng mL(-1)) showed relative standard deviation and the relative error lower than 11.9% for all enantiomers evaluated. Finally, the method was successfully used for the determination of mirtazapine and its metabolite enantiomers in plasma samples obtained after single drug administration of mirtazapine to a healthy volunteer. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The present work investigates the mechanisms involved in the vasorelaxant effect of ent-16 alpha-methoxykauran-19-oic acid (KA-OCH(3)), a semi-synthetic derivative obtained from the kaurane-type diterpene ent-kaur-16-en-19-oic acid (kaurenoic acid). Vascular reactivity experiments were performed in aortic rings isolated from male Wistar rats using standard muscle bath procedures. The cytosolic calcium concentration ([Ca(2+)]c) was measured by confocal microscopy using the fluorescent probe Fluo-3 AM. Blood pressure measurements were performed in conscious rats. KA-OCH(3) (10,50 and 100 mu mol/l) inhibited phenylephrine-induced contraction in either endothelium-intact or endothelium-denuded rat aortic rings. KA-OCH(3) also reduced CaCl(2)-induced contraction in a Ca(2+)-free solution containing KCl (30 mmol/l) or phenylephrine (0.1 mu mol/l). KA-OCH(3) (0.1-300 mu mol/l) concentration-dependently relaxed endothelium-intact and endothelium-denuded aortas pre-contracted with either phenylephrine or KCl, to a greater extent than kaurenoic acid. Moreover, a Ca(2+) mobilisation study showed that KA-OCH(3) (100 mu mol/l) inhibited the increase in Ca(2+) concentration in smooth muscle and endothelial cells induced by phenylephrine or KCl. Pre-incubation of intact or denuded aortic rings with N(G)-nitro-L-arginine methyl ester (L-NAME, 100 mu mol/l), 7-nitroindazole (100 mu mol/l), wortmannin (0.5 mu mol/l) and 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ 1 mu mol/l) produced a rightward displacement of the KA-OCH(3) concentration-response curve. Intravenous administration of KA-OCH(3) (1-10 mg/kg) reduced mean arterial blood pressure in normotensive rats. Collectively, our results show that KA-OCH(3) induces vascular relaxation and hypotension. The mechanisms underlying the cardiovascular actions of KA-OCH(3) involve blockade of Ca(2+) influx and activation of the NO-cGMP pathway. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Investigation of the bioactive crude extracts from two populations of the red alga Laurencia dendroidea from the southeastern Brazilian coast led to the identification of five sesquiterpenes: (+)-obtusane (1), a triquinane derivative (2), (-)-elatol (3), obtusol (4), and cartilagineol (5). An antileishmanial bioassay against Leishmania amazonensis was conducted for crude lipophilic extracts and for sesquiterpenes 2, 3, and 4. Compounds 3 and 4 displayed in vitro and in vivo leishmanicidal activity and very low cytotoxicity.
Resumo:
An enantioselective liquid chromatographic method using two-phase hollow fiber liquid-phase microextraction (HF-LPME-HPLC) was developed for the determination of isradipine (ISR) enantiomers and its main metabolite (pyridine derivative of isradipine, PDI) in microsomal fractions isolated from rat liver. The analytes were extracted from 1 mL of microsomal medium using a two-phase HF-LPME procedure with hexyl acetate as the acceptor phase, 30 min of extraction, and sample agitation at 1,500 rpm. For the first time, ISR enantiomers and PDI were resolved. For this separation, a ChiralpakA (R) AD column with hexane/2-propanol/ethanol (94:04:02, v/v/v) as the mobile phase at a flow rate of 1.5 mL min(-1) was used. The column was kept at 23 A +/- 2 A degrees C. The drug and metabolite detection was performed at 325 nm and the internal standard oxybutynin was detected at 225 nm. The recoveries were 23% for PDI and 19% for each ISR enantiomer. The method presented quantification limits (LOQ) of 50 ng mL(-1) and was linear over the concentration range of 50-5,000 and 50-2,500 ng mL(-1) for PDI and each ISR enantiomer, respectively. The validated method was employed to an in vitro biotransformation study of ISR using rat liver microsomal fraction showing that (+)-(S)-ISR is preferentially biotransformed.
Resumo:
Phenothiazines (PTZ) are drugs widely used in the treatment of schizophrenia. Trifluoperazine, a piperazinic PTZ derivative, has been described as inhibitor of the mitochondrial permeability transition (MPT). We reported previously the antioxidant activity of thioridazine at relatively low concentrations associated to the inhibition of the MPT (Brit. J. Pharmacol., 2002;136:136-142). In this study, it was investigated the induction of MPT by PTZ derivatives at concentrations higher than 10 mu M focusing on the molecular mechanism involved. PTZ promoted a dose-response mitochondrial swelling accompanied by mitochondrial transmembrane potential dissipation and calcium release, being thioridazine the most potent derivative. PTZ-induced MPT was partially inhibited by CsA or Mg(2+) and completely abolished by the abstraction of calcium. The oxidation of reduced thiol group of mitochondrial membrane proteins by PTZ was upstream the VIP opening and it was not sufficient to promote the opening of PTP that only occurred when calcium was present in the mitochondrial matrix. EPR experiments using DMPO as spin trapping excluded the participation of reactive oxygen species on the PTZ-induced MPT. Since 117 give rise to cation radicals chemically by the action of peroxidases and cyanide inhibited the PTZ-induced swelling, we propose that VIZ bury in the inner mitochondrial membrane and the chemically generated 117 cation radicals modify specific thiol groups that in the presence of Ca(2+) result in MPT associated to cytochrome c release. These findings contribute for the understanding of mechanisms of MET induction and may have implications for the cell death induced by PTZ. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Lantana (Lantana camara Linn.) is a noxious weed to which certain medicinal properties have been attributed, but its ingestion has been reported to be highly toxic to animals and humans, especially in the liver. The main hepatotoxin in lantana leaves is believed to be the pentacyclic triterpenoid lantadene A (LA), but the precise mechanism by which it induces hepatotoxicity has not yet been established. This work addressed the action of LA and its reduced derivative (RLA) on mitochondrial bioenergetics. At the concentration range tested (5-25 mu M), RLA stimulated state-4 respiration, inhibited state-3 respiration, circumvented oligomycin-inhibited state-3 respiration, dissipated membrane potential and depleted ATP in a concentration-dependent manner. However. LA did not stimulate state-4 respiration, nor did it affect the other mitochondrial parameters to the extent of its reduced derivative. The lantadenes didn`t inhibit the CCCP-uncoupled respiration but increased the ATPase activity of intact coupled mitochondria. The ATPase activity of intact uncoupled or disrupted mitochondria was not affected by the compounds. We propose, therefore, that RLA acts as a mitochondrial uncoupler of oxidative phosphorylation, a property that arises from the biotransformation (reduction) of LA, and LA acts in other mitochondrial membrane components rather than the ATP synthase affecting the mitochondrial bioenergetics. Such effects may account for the well-documented hepatoxicity of lantana. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A CE method is described for the enantioselective analysis of propranolol (Prop) and 4-hydroxypropranolol (4-OH-Prop) in liquid Czapek medium with application in the study of the enantioselective biotransformation of Prop by endophytic fungi. The electrophoretic conditions previously optimized were as follows: an uncoated fused-silica capillary, 4%w/v carboxymethyl-beta-CD in 25 mmol/L triethylamine/phosphoric acid (H(3)PO(4)) buffer at pH 9 as running electrolyte and 17 kV of voltage. UV detection was carried out at 208 nm. Liquid-liquid extraction using diethyl ether: ethyl acetate (1:1 v/v) as extractor solvent was employed for sample preparation. The calibration curves were linear over the concentration range of 0.25-10.0 mu g/mL for each 4-OH-Prop enantiomer and 0.10-10.0 mu g/mL for each Prop enantiomer (r >= 0.995). Within-day and between-day relative standard deviations and relative errors for precision and accuracy were lower than 15% for all the enantiomers. Finally, the validated method was used to evaluate Prop biotransformation in its mammalian metabolite 4-OH-Prop by some selected endophytic fungi. The screening of five strains of endophytic fungi was performed and all of them could biotransform Prop to some extent. Specifically, Glomerella cingulata (VA1) biotransformed 47.8% of (-)-(S)-Prop to (-)-(S)-4-OH-Prop with no formation of (+)-(R)4-OH-Prop in 72 h of incubation.
Resumo:
The quenching of the triplet state of three n-alkyl 3-nitrophenyl ethers: 3-nitroanisol (3-NA), n-butyl 3-nitrophenyl ether (3-NB) and n-decyl 3-nitrophenyl ether (3-ND) by four aniline derivatives: aniline (AN), N,N-dimethylaniline (DMA), 2,4,6-trimethylaniline (TMA), and 4-tetradecylaniline (TDA), was investigated in aqueous micellar SDS solutions by laser flash photolysis. The transient absorption spectra for 3-NA and 3-NB reveal the formation of long-lived intermediate species in the presence of all four quenchers. while for 3-ND no amine-induced intermediates are observed. Comparison of the transient absorption spectra of the probe 3-NA in the presence of DMA in aqueous and micellar solutions shows that the intermediate species are favored by the SDS micelles. With DMA and TMA as quenchers the intermediates are suggested to be the ion radicals generated by single electron transfer from the amine to the probe in the triplet excited state. For the quenchers AN and TDA, the intermediates may be a-complexes. The relative quenching efficiencies generally decrease as the affinity of the quencher for the micellar phase (AN < DMA < TMA < TDA) increases and the mobility of the excited probe (3-NA > 2-NB) decreases. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A method for simultaneous determination of seven benzodiazepines (BZPs) (flunitrazepam, clonazepam, oxazepam, lorazepam, chlordiazepoxide, nordiazepam and diazepam using N-desalkylflurazepam as internal standard) in human plasma using liquid-liquid and solid-phase extractions followed by high-performance liquid chromatography (HPLC) is described. The analytes were separated employing a LC-18 DB column (250 mm x 4.6 mm, 5 mu m) at 35 degrees C under isocratic conditions using 5 mM KH(2)PO(4) buffer solution pH 6.0: methanol: diethyl ether (55:40:5, v/v/v) as mobile phase at a flow rate of 0.8 mL min(-1). UV detection was carried out at 245 nm. Employing LLE, the best conditions were achieved with double extraction of 0.5 mL, plasma using ethyl acetate and Na(2)HPO(4) pH 9.5 for pH adjusting. Employing SPE, the best conditions were achieved with 0.5 mL plasma plus 3 mL 0.1 M borate buffer pH 9.5, which were then passed through a C18 cartridge previously conditioned, washed for 3 times with these solvents: 3 mL 0.1 M borate buffer pH 9.5,4 mL Milli-Q water and 1 mL acetonitrile 5%, finally the BZPs elution was carried with diethyl ether: n-hexane: methanol (50:30:20). In both methods the solvent was evaporated at 40 degrees C under nitrogen flow. The validation parameters obtained in LLE were linearity range of 50-1200 ng mL(-1) plasma (r >= 0.9927), limits of quantification of 50 ng mL(-1) plasma, within-day and between-day CV% and E% for precision and accuracy lower than 15%, and recovery above 65% for all BZPs. In SPE, the parameter obtained were linearity range of 30-1200 ng mL(-1) plasma (r >= 0.9900), limits of quantification of 30 ng mL(-1) plasma, within-day and between-day CV% and E% for precision and accuracy lower than 15% and recovery above 55% for all BZPs. These extracting procedures followed by HPLC analysis showed their suitable applicability in order to examine one or more BZPs in human plasma. Moreover, it could be suggested that these procedures might be employed in various analytical applications, in special for toxicological/forensic analysis. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A method for the simultaneous analysis of the enantiomers of mefloquine (MQ) and its main metabolite carboxymefloquine (CMQ) in plasma is described for the first time. The assay involves two-step liquid-phase micro-extraction (LPME) and enantioselective high-performance liquid chromatography. In the first LPME step, the enantiomers of MQ were extracted from an alkalinized sample through a thin layer of di-n-hexyl ether immobilized in the pores of the hollow fiber and into 0.01 M perchloric acid as acceptor solution. In the second LPME step, the same sample was acidified to enable the extraction of CMQ using the same organic solvent and 0.05 M sodium hydroxide as acceptor phase. The analytes were resolved on a Chirobiotic T column in the polar-organic mode of elution and detected at 285 nm. The recovery rates from 1 mL of plasma were in the range 35-38%. The method presented limits of quantification of 50 ng/mL for all analytes and was linear up to 1,500 and 3,000 ng/mL for the enantiomers of MQ and CMQ, respectively. The plasmatic concentrations of (+)-(RS)-MQ were higher than those of (-)-(SR)-MQ after oral administration of the racemic drug to rats.
Resumo:
Introduction - Baccharis dracunculifolia, which has great potential for the development of new phytotherapeutic medicines, is the most important botanical source of the southeastern Brazilian propolis, known as green propolis on account of its color. Objective - To develop a reliable reverse-phase HPLC chromatographic method for the analysis of phenolic compounds in both B. dracunculifolia raw material and its hydroalcoholic extracts. Methodology - The method utilised a C(18) CLC-ODS (M) (4.6 x 250 mm) column with nonlinear gradient elution and UV detection at 280 nm. A procedure for the extraction of phenolic compounds using aqueous ethanol 90%, with the addition of veratraldehyde as the internal standard, was developed allowing the quantification of 10 compounds: caffeic acid, coumaric acid, ferulic acid, cinnamic acid, aromadendrin-4`-methyl ether, isosakuranetin, drupanin, artepillin C, baccharin and 2,2-dimethyl-6-carboxyethenyl-2H-1-benzopyran acid. Results - The developed method gave a good detection response with linearity in the range 20.83-800 mu g/mL and recovery in the range 81.25-93.20%, allowing the quantification of the analysed standards. Conclusion - The method presented good results for the following parameters: selectivity, linearity, accuracy, precision, robustness, as well as limit of detection and limit of quantitation. Therefore, this method could be considered as an analytical tool for the quality control of B. dracunculifolia raw material and its products in both cosmetic and pharmaceutical companies. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Five structurally related pimarane diterpenes isolated from the roots of Viguiera arenaria and a further compound obtained by chemical derivatization were evaluated in vitro against the trypomastigote forms of Trypanosoma cruzi. The natural compound ent-15-pimarene-8 beta,19-diol and the derivative ent-8(14),15-pimaradiene-3 beta-acetoxy showed the highest trypanocidal activity, displaying IC50 values of 116.5 +/- 1.21 and 149.3 +/- 1.07 mu M, respectively, while the positive control, violet gentian, showed an IC50 of 76 mu M. Based on the results, it can be concluded that minor structural differences among the tested diterpenes influence significantly the trypanocidal activity, thus bringing new perspectives to the establishment of structure-activity relationships among this type of metabolites to the treatment of Chagas` disease. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
The in vitro antileishmanial activity of Brazilian green propolis hydroalcoholic extract (BPE) were carried out on Leishmania (Viannia) braziliensis against both promastigote (doses ranging from 1 to 750 mu g mL(-1)) and amastigote (10, 100, and 250 mu g mL(-1)) assays in comparison with the positive (amphotericin B) and negative (dimethyl sulfoxide at 1% in physiologic solution) control groups. BPE displayed in vitro antileishmanial activities against promastigote forms of the parasite (p<0.05). However, it was inactive against its amastigote ones. In the in vitro cytotoxicity assay against Vero cells, BPE showed no cytotoxicity in the maximum doses tested. The high-performance liquid chromatography analysis allowed the identification of caffeic acid, p-coumaric acid, aromadendrine-4`-methyl-ether, 3-prenyl-p-coumaric acid (drupanin), and 3,5-diprenil-p-cumarico acid (artepillin C) as major compounds of BPE. In the in vivo assay, using a Balb/C lineage of Mus musculus male mice, groups of ten animals each were treated (1.5 mg kg day(-1)) with BPE orally (group 1), BPE topically (group 2), BPE orally and topically (group 3), and glucantime (group 4), using NaCl 0.9% (group 5) as the negative control group. Groups 1, 2, and 3 displayed a decrease on lesion development, after 90 days of treatment, by 78.6%, 84.3%, and 90.0%, respectively, while the glucantime-treated group showed 57.7% of decrease, all in comparison with the negative control group. It is the first time that the in vivo antileishmanial activity has been reported for Brazilian green propolis.
Resumo:
In this study was developed a new nano drug delivery system (NDDS) based on association of biodegradable surfactants with biocompatible magnetic fluid of maguemita citrate derivative. This formulation consists in a magnetic emulsion with nanostructured colloidal particles. Preliminary in vitro experiments showed that the formulation presents a great potential for synergic application in the topical release of photosensitizer drug (PS) and excellent target tissue properties in the photodynamic therapy (PDT) combined with hyperthermia (HPT) protocols. The physical chemistry characterization and in vitro assays were carried out by Zn(II) Phtalocyanine (ZnPc) photosensitizer incorporated into NDDS in the absence and the presence of magnetic fluid, showed good results and high biocompatibility. In vitro experiments were accomplished by tape-stripping protocols for quanti. cation of drug association with different skin tissue layers. This technique is a classical method for analyses of drug release in stratum corneum and epidermis+ dermis skin layers. The NDDS formulations were applied directly in pig skin (tissue model) fixed in the cell`s Franz device with receptor medium container with a PBS/EtOH 20% solution (10mM, pH 7.4) at 37 degrees C. After 12 h of topical administration stratum corneum was removed from fifty tapes and the ZnPc retained was evaluated by solvent extraction in dimetil-sulphoxide under ultrasonic bath. These results indicated that magnetic nanoemulsion (MNE) increase the drug release on the deeper skin layers when compared with classical formulation in the absence of magnetic particles. This could be related with the increase of biocompatibility of NDDS due to the great affinity for the polar extracelullar matrix in the skin and also for the increase in the drug partition inside of corneocites wall. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Two kaurane diterpenes, ent-kaur-16(17)-en-19-oic acid (KA) and 15-beta-isovaleryloxy-ent-kaur-16(17)-en-19-oic acid (KA-Ival), isolated from Aspilia foliacea, and the methyl ester derivative of KA (KA-Me) were evaluated against oral pathogens. KA was the most active compound, with MIC values of 10 mu g mL(-1) against the following microorganisms: Streptococcus sobrinus, Streptococcus mutans, Streptococcus mitis, Streptococcus sanguinis, and Lactobacillus casei. However, KA did not show significant activity against Streptococcus salivarius and Enterococcus faecalis, with MIC values equal to 100 and 200 mu g mL(-1), respectively. Our results show that KA has potential to be used as a prototype for the discovery of new effective anti-infection agents against microorganisms responsible for caries and periodontal diseases. Moreover, these results allow to conclude that minor structural differences among these diterpenes significantly influence their antimicrobial activity, bringing new perspectives to studies on the structure-activity relationship of this type of metabolites with respect to caries and periodontal diseases.