108 resultados para deconfinement phase transition
Resumo:
Poly(3-hydroxybutyrate) (PHB) is a very promising biopolymer. In order to improve its processability and decrease its brittleness, PHB/elastomer blends can be prepared. In the work reported, the effect of the addition of a rubbery phase, i.e. ethylene - propylene-diene terpolymer (EPDM) or poly(vinyl butyral) (PVB), on the properties of PHB was studied. The effects of rubber type and of changing the PHB/elastomer blend processing method on the crystallinity and physical properties of the blends were also investigated. For blends based on PHB, the main role of EPDM is its nucleating effect evidenced by a decrease of crystallization temperature and an increase of crystallinity with increasing EPDM content regardless of the processing route. While EPDM has a weak effect on PHB glass transition temperature, PVB induces a marked decrease of this temperature thank to its plasticizer that swells the PHB amorphous phase. A promising solution to improve the mechanical properties of PHB seems to be the melt-processing of PHB with both plasticizer and EPDM. In fact, the plasticizer is more efficient than the elastomer in decreasing the PHB glass transition temperature and, because of the nucleating effect of EPDM, the decrease of the PHB modulus due to the plasticizer can be counterbalanced. (C) 2010 Society of Chemical Industry
Resumo:
Emulsions surfer alterations in their microstructure after applied on the skin, because of the interaction with skin constituents and mainly by the evaporation of volatile components. These alterations are not even considered by cosmetic formulators, but they are extremely important because they can act on formulation stability, on delivery and on permeation of actives and also on the ability to build the occlusive film, responsible for skin`s moisturization. This research studied the phase changing during evaporation of emulsions made with three different oil phase: mineral oil, avocado oil, and isocethyl/stearoil stearate, as a function of the decrease on water ratio, using phase diagrams and evaporation test. It was observed the formation of liquid crystalline phases and their transition along the evaporation path for emulsions with the three different oil phases. It was also observed that these transitions occurred in different water ratios.
Resumo:
Camu-camu is a tropical fruit with very high vitamin C content and commercialized as frozen pulp. Enthalpies of freezing, temperatures of the onset of ice melting, and glass transition temperatures of the maximally freeze-concentrated phase (T`(g)) of camu-camu pulp and of samples containing maltodextrin (DE20) and sucrose were measured by differential scanning calorimetry. Maltodextrin exhibited the largest freeze stabilization potential, increasing T`(g) from -58.2 degrees C (natural pulp) to -39.6 degrees C when 30% (w/w) maltodextrin DE 20 was added. Sucrose showed negligible effect on T`(g) but enhanced considerably the freezing point depression and less amount of ice was formed.
Resumo:
The aim of this work was to study the glass transition, the glass transition of the maximally freeze-concentrated fractions, the ice melting and the gelatinization phenomenon in dispersions of starch prepared using glycerol- water solutions. The starch concentration was maintained constant at 50 g cassava starch/100 g starch dispersions, but the concentration of the glycerol solutions was variable (C-g= 20, 40, 60, 80 and 100 mass/mass%). The phase transitions of these dispersions were studied by calorimetric methods, using a conventional differential scanning calorimeter (DSC) and a more sensitive equipment (micro-DSC). Apparently, in the glycerol diluted solutions (20 and 40%), the glycerol molecules interacted strongly with the glucose molecules of starch. While in the more concentrated glycerol domains (C-g> 40%), the behaviour was controlled by migration of water molecules from the starch granules, due to a hypertonic character of glycerol, which affected all phase transitions.
Resumo:
The landfall of Cyclone Catarina on the Brazilian coast in March 2004 became known as the first documented hurricane in the South Atlantic Ocean, promoting a new view oil how large-scale features can contribute to tropical transition. The aim of this paper is to put the large-scale circulation associated with Catarina`s transition in climate perspective. This is discussed in the light of a robust pattern of spatial correlations between thermodynamic and dynamic variables of importance for hurricane formation. A discussion on how transition mechanisms respond to the present-day circulation is presented. These associations help in understanding why Catarina was formed in a region previously thought to be hurricane-free. Catarina developed over a large-scale area of thermodynamically favourable air/sea temperature contrast. This aspect explains the paradox that such a rare system developed when the sea surface temperature was slightly below average. But, although thermodynamics played an important role, it is apparent that Catarina would not have formed without the key dynamic interplay triggered by a high latitude blocking. The blocking was associated with an extreme positive phase of the Southern Annular Mode (SAM) both hemispherically and locally, and the nearby area where Catarina developed is found to be more cyclonic during the positive phase of the SAM. A conceptual model is developed and a `South Atlantic index` is introduced as a useful diagnostic of potential conditions leading to tropical transition in the area, where large-scale indices indicate trends towards more favourable atmospheric conditions for tropical cyclone formation. Copyright (c) 2008 Royal Meteorological Society
Resumo:
The transition to turbulence (spatio-temporal chaos) in a wide class of spatially extended dynamical system is due to the loss of transversal stability of a chaotic attractor lying on a homogeneous manifold (in the Fourier phase space of the system) causing spatial mode excitation Since the latter manifests as intermittent spikes this has been called a bubbling transition We present numerical evidences that this transition occurs due to the so called blowout bifurcation whereby the attractor as a whole loses transversal stability and becomes a chaotic saddle We used a nonlinear three-wave interacting model with spatial diffusion as an example of this transition (C) 2010 Elsevier B V All rights reserved
Resumo:
Aqueous dispersions of the anionic phospholipid dimyristoyl phosphatidylglycerol (DMPG) at pH above the apparent pK of DMPG and concentrations in the interval 70-300 mM have been investigated by small (SAXS) and wide-angle X-ray scattering, differential scanning calorimetry, and polarized optical microscopy. The order. disorder transition of the hydrocarbon chains occurs along an interval of about 10 degrees C (between T(m)(on) similar to 20 degrees C and T(m)(off) similar to 30 degrees C). Such melting regime was previously characterized at lower concentrations, up to 70 mM DMPG, when sample transparency was correlated with the presence of pores across the bilayer. At higher concentrations considered here, the melting regime persists but is not transparent. Defined SAXS peaks appear and a new lamellar phase L(p) with pores is proposed to exist above 70 mM DMPG, starting at similar to 23 degrees C (similar to 3 degrees C above T(m)(on)) and losing correlation after T(m)(off). A new model for describing the X-ray scattering of bilayers with pores, presented here, is able to explain the broad band attributed to in-plane correlation between pores. The majority of cell membranes have a net negative charge, and the opening of pores across the membrane tuned by ionic strength, temperature, and lipid composition is likely to have biological relevance.
Resumo:
We have investigated the crystal structures and phase transitions of nanocrystalline ZrO(2)-1 to -13 mol % Sc(2)O(3) by synchrotron X-ray powder diffraction and Raman spectroscopy. ZrO(2)-Sc(2)O(3) nanopowders were synthesized by using a stoichiometric nitrate-lysine get-combustion route. Calcination processes at 650 and at 850 degrees C yielded nanocrystalline materials with average crystallite sizes of (10 +/- 1) and (25 +/- 2) nm, respectively. Only metastable tetragonal forms and the cubic phase were identified, whereas the stable monoclinic and rhombohedral phases were not detected in the compositional range analyzed in this work. Differently from the results of investigations reported in the literature for ZrO(2)-Sc(2)O(3) materials with large crystallite sizes, this study demonstrates that, if the crystallite sizes are small enough (in the nanometric range), the metastable t ``-form of the tetragonal phase is retained. We have also determined the t`-t `` and t ``-cubic compositional boundaries at room temperature and analyzed these transitions at high temperature. Finally, using these results, we built up a metastable phase diagram for nanocrystalline compositionally homogeneous ZrO(2)-Sc(2)O(3) solid solutions that strongly differs from that previously determined from compositionally homogeneous ZrO(2)-Sc(2)O(3), Solid solutions with much larger crystallite sizes.
Resumo:
The ternary phase diagram for the orange essential oil (OEO)/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/water system was constructed at 25 degrees C. It indicates a large single phase region, comprising an isotropic water-in-oil (W/O) microemulsion (ME) phase (L(2)), a liquid crystal (LC) (lamellar or hexagonal) and a large unstable emulsion phase that separates in two phases of normal and reverse micelles (L(1) and L(2)). In this communication the properties of the ME are investigated by viscosity, electric conductivity and small angle X-ray scattering (SAXS) indicating that the isotropic ME phase exhibits different behaviors depending on composition. At low water content low viscous ""dry"" surfactant structures are formed, whereas at higher water content higher viscous water droplets are formed. The experimental data allow the determination of the transition from ""dry"" to the water droplet structures within the L(2) phase. SAXS analyses have also been performed for selected LC samples. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We performed Monte Carlo simulations to investigate the steady-state critical behavior of a one-dimensional contact process with an aperiodic distribution of rates of transition. As in the presence of randomness, spatial fluctuations can lead to changes of critical behavior. For sufficiently weak fluctuations, we give numerical evidence to show that there is no departure from the universal critical behavior of the underlying uniform model. For strong spatial fluctuations, the analysis of the data indicates a change of critical universality class.
Resumo:
Measurements of the magnetic susceptibility of the frustrated pyrochlore magnet Gd(2)Sn(2)O(7) have been performed at temperatures below T = 5 K and in magnetic fields up to H = 12 T. The phase boundaries determined from these measurements are mapped out in an H-T phase diagram. In this gadolinium compound, where the crystal-field splitting is small and the exchange and dipolar energy are comparable, the Zeeman energy overcomes these competing energies, resulting in at least four magnetic phase transitions below 1 K. These data are compared against those for Gd(2)Ti(2)O(7) and will, we hope, stimulate further studies.
Resumo:
The physical properties of the La(0.6)Y(0.1)Ca(0.3)MnO(3) compound have been investigated, focusing on the magnetoresistance phenomenon studied by both dc and ac electrical transport measurements. X-ray diffraction and scanning electron microscopy analysis of ceramic samples prepared by the sol-gel method revealed that specimens are single phase and have average grain size of similar to 0.5 mu m. Magnetization and 4-probe dc electrical resistivity rho(T,H) experiments showed that a ferromagnetic transition at T(C) similar to 170 K is closely related to a metal-insulator (MI) transition occurring at essentially the same temperature T(MI). The magnetoresistance effect was found to be more pronounced at low applied fields (H <= 2.5 T) and temperatures close to the MI transition. The ac electrical transport was investigated by impedance spectroscopy Z(f,T,H) under applied magnetic field H up to 1 T. The Z(f,T,H) data exhibited two well-defined relaxation processes that exhibit different behaviors depending on the temperature and applied magnetic field. Pronounced effects were observed close to T (C) and were associated with the coexistence of clusters with different electronic and magnetic properties. In addition, the appreciable decrease of the electrical permittivity epsilon`(T,H) is consistent with changes in the concentration of e(g) mobile holes, a feature much more pronounced close to T (C).
Resumo:
Polycrystalline La(0.86)Sr(0.14)Mn(1-x)Cu(x)O(3+delta) (x = 0, 0.05, 0.10, 0.15, 0.20) manganites were investigated by means of magnetic measurements and zero-field (139)La and (55)Mn nuclear magnetic resonance (NMR) spectroscopy. Magnetization versus temperature measurements revealed a paramagnetic to ferromagnetic transition in most samples, with lower Curie temperatures and broader transitions for samples with higher Cu contents. The details of the magnetization measurements suggested a phase-separated scenario, with ferromagnetic clusters embedded in an antiferromagnetic matrix, especially for the samples with large Cu contents (x = 0.15 and 0.20). Zero-field (139)La NMR measurements confirmed this finding, since the spectral features remained almost unchanged for all Cu-doped samples, whereas the bulk magnetization was drastically reduced with increasing Cu content. (55)Mn NMR spectra were again typical of ferromagnetic regions, with a broadening of the resonance line caused by the disorder introduced by the Cu doping. The results indicate a coexistence of different magnetic phases in the manganites studied, with the addition of Cu contributing to the weakening of the double-exchange interaction in most parts of the material.
Resumo:
The crystallization of laser glasses in the system (B(2)O(3))(0.6){(Al(2)O(3))(0.4-y)(Y(2)O(3))(y)} (0.1 <= y <= 0.25) doped with different levels of ytterbium oxide has been investigated by X-ray powder diffraction, differential thermal analysis, and various solid-state NMR techniques. The homogeneous glasses undergo major phase segregation processes resulting in crystalline YBO(3), crystalline YAI(3)(BO(3))(4), and residual glassy B(2)O(3) as the major products. This process can be analyzed in a quantitative fashion by solid-state (11)B, (27)Al, and (89)Y NMR spectroscopies as well as (11)B{(27)Al} rotational echo double resonance (REDOR) experiments. The Yb dopants end up in both of the crystalline components, producing increased line widths of the corresponding (11)B, (27)Al, and (89)Y NMR resonances that depend linearly on the Yb/Y substitution ratio. A preliminary analysis of the composition dependence suggests that the Yb(3+) dopant is not perfectly equipartitioned between both crystalline phases, suggesting a moderate preference of Yb to substitute in the crystalline YBO(3) component.
Resumo:
A very unusual triple structural transition pattern below room temperature was observed for the antifilarial drug diethylcarbamazine citrate. Besides the first thermal, crystallographic, and vibrational investigations of this first-line drug used in clinical treatment for lymphatic filariasis, a noteworthy behavior with three structural transformations as a function of temperature was demonstrated by differential scanning calorimetry, Raman spectroscopy, and single-crystal X-ray diffractometry. Our X-ray data on single crystals allow for a complete featuring and understanding of all transitions, since the four structures associated with the three solid-solid phase transformations were accurately determined. Two of three structural transitions show an order-disorder mechanism and temperature hysteresis with exothermic peaks at 224 K (T(1)`) and 213 K (T(2)`) upon cooling and endothermic ones at 248 K (T(1)) and 226 K (T(2)) upon heating. The other transition occurs at 108 K (T(3)) and it is temperature-rate sensitive. Molecular displacements onto the (010) plane and conformational changes of the diethylcarbamazine backbone as a consequence of the C-H center dot center dot center dot N hydrogen bonding formation/cleavage between drug molecules explain the mechanism of the transitions at T(1)`/T(2). However, such changes are observed only on alternate columns of the drug intercalated by citrate chains, which leads to a doubling of the lattice period along the a axis of the 235 K structure with respect to the 150 and 293 K structures. At T(2)`/T(1), these structural alterations occur in all columns of the drug. At T(3), there is a rotation on the axis of the N-C bond between the carbamoyl moiety and an ethyl group of one crystallographically independent diethylcarbamazine molecule besides molecular shifts and other conformational alterations. The impact of this study is based on the fascinating finding in which the versatile capability of structural adaptation dependent on the thermal history was observed for a relatively simple organic salt, diethylcarbamazine citrate.