165 resultados para SEMICONDUCTOR QUANTUM RODS
Resumo:
A fully conserving algorithm is developed in this paper for the integration of the equations of motion in nonlinear rod dynamics. The starting point is a re-parameterization of the rotation field in terms of the so-called Rodrigues rotation vector, which results in an extremely simple update of the rotational variables. The weak form is constructed with a non-orthogonal projection corresponding to the application of the virtual power theorem. Together with an appropriate time-collocation, it ensures exact conservation of momentum and total energy in the absence of external forces. Appealing is the fact that nonlinear hyperelastic materials (and not only materials with quadratic potentials) are permitted without any prejudice on the conservation properties. Spatial discretization is performed via the finite element method and the performance of the scheme is assessed by means of several numerical simulations.
Resumo:
In this work we explore the noise characteristics in lithographically-defined two terminal devices containing self-assembled InAs/InP quantum dots. The experimental ensemble of InAs dots show random telegraph noise (RTN) with tuneable relative amplitude-up to 150%-in well defined temperature and source-drain applied voltage ranges. Our numerical simulation indicates that the RTN signature correlates with a very low number of quantum dots acting as effective charge storage centres in the structure for a given applied voltage. The modulation in relative amplitude variation can thus be associated to the altered electrostatic potential profile around such centres and enhanced carrier scattering provided by a charged dot.
Resumo:
Metal oxide semiconductor (MOS) capacitors with titanium oxide (TiO(x)) dielectric layer, deposited with different oxygen partial pressure (30,35 and 40%) and annealed at 550, 750 and 1000 degrees C, were fabricated and characterized. Capacitance-voltage and current-voltage measurements were utilized to obtain, the effective dielectric constant, effective oxide thickness, leakage current density and interface quality. The obtained TiO(x) films present a dielectric constant varying from 40 to 170 and a leakage current density, for a gate voltage of - 1 V, as low as 1 nA/cm(2) for some of the structures, acceptable for MOS fabrication, indicating that this material is a viable high dielectric constant substitute for current ultra thin dielectric layers. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We have synthesized phenylene-vinylene (PV) polymers containing segments with different conjugation lengths interspaced by random distributed aliphatic segments. Infrared (IR) and ultraviolet-visible (UV-vis) spectroscopies, hydrogen nuclear magnetic resonance ((1)H NMR) spectrometry and differential scanning calorimetry (DSC) were used to characterize the prepared copolymers` structures. Polymers molecular weights were determined by gel permeation chromatography (GPC). The effect of polymer structure and composition on emission properties was studied by fluorescence (PL) spectroscopy under different irradiation wavelength. The emission energy shift due to segments with longer conjugation lengths was minor owed to the low polymerization degree achieved.
Resumo:
The skin is a large and accessible area of the body, offering the possibility to be used as an alternative route for drug delivery. In the last few years strong progress has been made on the developing of nanoparticulate systems for specific applications. The interaction of such small particles with human skin and their possible penetration attracted some interest from toxicological as well as from drug delivery perspectives. As size is assumed to play a key role, the aim of the present work was to investigate the penetration profile of very small model particles (similar to 4 nm) into excised human skin under conditions chosen to mimic the in vivo situation. Possible application procedures such as massaging the formulation (5 to 10 minutes) were analyzed by non-invasive multiphoton- and confocal laser scanning microscopy (MPM, CLSM). Furthermore, the application on damaged skin was taken into account by deliberately removing parts of the stratum corneum. Although it was clearly observed that the mechanical actions affected the distribution pattern of the QDs on the skin surface, there was no evidence of penetration into the skin in all cases tested. QDs could be found in deeper layers only after massaging of damaged skin for 10 min. Taking these data into account, obtained on the gold standard human skin, the potential applications of nanoparticulate systems to act as carrier delivering drugs into intact skin might be limited and are only of interest for partly damaged skin.
Resumo:
Time-averaged conformations of (+/-)-1-[3,4-(methylenedioxy)phenyl]-2-methylaminopropane hydrochloride (MDMA, ""ecstasy"") in D(2)O, and of its free base and trifluoroacetate in CDCl(3), were deduced from their (1)H NMR spectra and used to calculate their conformer distribution. Their rotational potential energy surface (PES) was calculated at the RHF/6-31G(d,p), 133LYP/6-31G(d,p), B3LYP/cc-pVDZ and AM1 levels. Solvent effects were evaluated using the polarizable continuum model. The NMR and theoretical studies showed that, in the free base, the N-methyl group and the ring are preferentially trans. This preference is stronger in the salts and corresponds to the X-ray structure of the hydrochloride. However, the energy barriers separating these forms are very low. The X-ray diffraction crystal structures of the anhydrous salt and its monohydrate differed mainly in the trans or cis relationship of the N-methyl group to the a-methyl, although these two forms interconvert freely in solution. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
In 1966 the Brazilian physicist Klaus Tausk (b. 1927) circulated a preprint from the International Centre for Theoretical Physics in Trieste, Italy, criticizing Adriana Daneri, Angelo Loinger, and Giovanni Maria Prosperi`s theory of 1962 on the measurement problem in quantum mechanics. A heated controversy ensued between two opposing camps within the orthodox interpretation of quantum theory, represented by Leon Rosenfeld and Eugene P. Wigner. The controversy went well beyond the strictly scientific issues, however, reflecting philosophical and political commitments within the context of the Cold War, the relationship between science in developed and Third World countries, the importance of social skills, and personal idiosyncrasies.
Resumo:
In this paper, we consider solutions to the three-dimensional Schrodinger equation of the form psi(r) = u(r)/r, where u(0) not equal 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly cancelling the kinetic energy divergence. This renormalization procedure produces a self-adjoint Hamiltonian. We solve some problems with this new Hamiltonian to illustrate its usefulness.
Resumo:
Background: Titanium (Ti) is widely proven to enhance bone contact and growth on its surface. It is expected that bone defects could benefit from Ti to promote healing and to increase strength of the implanted area. Purpose: The present study aimed at comparing the potential of porous Ti sponge rods with synthetic hydroxyapatite (HA) for the healing of bone defects in a canine model. Material and Methods: Six mongrel dogs were submitted to three trephined osteotomies of 6.0 x 4.0 mm in one humerus and after 2 months another three osteotomies were performed in the contralateral humerus. A total of 36 defects were randomly filled either with Ti foam, particulate HA, or coagulum (control). The six animals were killed 4 months after the first surgery for histological and histometrical analysis. Results: The Ti-foam surface was frequently found in intimate contact with new bone especially at the defect walls. Control sites showed higher amounts of newly formed bone at 2 months - Ti (p = 0.000) and HA (p = 0.009) - and 4 months when compared with Ti (p = 0.001). Differently from HA, the Ti foam was densely distributed across the defect area which rendered less space for bone growth in the latter`s sites. The use of Ti foams or HA resulted in similar amounts of bone formation in both time intervals. Nevertheless, the presence of a Ti-foam rod preserved defect`s marginal bone height as compared with control groups. Also, the Ti-foam group showed a more mature bone pattern at 4 months than HA sites. Conclusion: The Ti foam exhibited good biocompatibility, and its application resulted in improved maintenance of bone height compared with control sites. The Ti foam in a rod design exhibited bone ingrowth properties suitable for further exploration in other experimental situations.
Resumo:
High-resolution X-ray diffractometry is used to probe the nature of a diffraction-peak broadening previously noticed in quantum dots (QDs) systems with freestanding InAs islands on top of GaAs (001) substrates [Freitas et al., Phys. Status Solidi (A) 204, 2548 (2007)]. The procedure is hence extended to further investigate the capping process of InAs/GaAs QDs. A direct correlation is established between QDs growth rates and misorientation of lattice-planes at the samples surfaces. This effect provides an alternative too] for studying average strain fields on QDs systems in standard triple axis diffractometers running on X-ray tube sources, which are much more common than synchrotron facilities. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
In this work, we present a detailed study on the optical properties of two GaAs/Al(0.35)Ga(0.65)As coupled double quantum wells (CDQWs) with inter-well barriers of different thicknesses, by using photoluminescence (PL) spectroscopy. The two CDQWs were grown in a single sample, assuring very similar experimental conditions for measurements of both. The PL spectrum of each CDQW exhibits two recombination channels which can be accurately identified as the excitonic e(1)-hh(1) transitions originated from CDQWs of different effective dimensions. The PL spectra characteristics and the behavior of the emissions as a function of temperature and excitation power are interpreted in the scenario of the bimodal interface roughness model, taking into account the exciton migration between the two regions considered in this model and the difference in the potential fluctuation levels between those two regions. The details of the PL spectra behavior as a function of excitation power are explained in terms of the competition between the band gap renormalization (BGR) and the potential fluctuation effects. The results obtained for the two CDQWs, which have different degrees of potential fluctuation, are also compared and discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The electronic properties of liquid hydrogen fluoride (HF) were investigated by carrying out sequential quantum mechanics/Born-Oppenheimer molecular dynamics. The structure of the liquid is in good agreement with recent experimental information. Emphasis was placed on the analysis of polarisation effects, dynamic polarisability and electronic excitations in liquid HF. Our results indicate an increase in liquid phase of the dipole moment (similar to 0.5 D) and isotropic polarisability (5%) relative to their gas-phase values. Our best estimate for the first vertical excitation energy in liquid HF indicates a blue-shift of 0.4 +/- 0.2 eV relative to that of the gas-phase monomer (10.4 eV). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We provide necessary and sufficient conditions for states to have an arbitrarily small uncertainty product of the azimuthal angle phi and its canonical moment L(z). We illustrate our results with analytical examples.
Resumo:
We present a quantum many body approach with van der Waal type of interaction to achieve (85)Rb Bose-Einstein condensate with tunable interaction which has been produced by magnetic field induced Feshbach resonance in the JILA experiment. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We consider random generalizations of a quantum model of infinite range introduced by Emch and Radin. The generalizations allow a neat extension from the class l (1) of absolutely summable lattice potentials to the optimal class l (2) of square summable potentials first considered by Khanin and Sinai and generalised by van Enter and van Hemmen. The approach to equilibrium in the case of a Gaussian distribution is proved to be faster than for a Bernoulli distribution for both short-range and long-range lattice potentials. While exponential decay to equilibrium is excluded in the nonrandom l (1) case, it is proved to occur for both short and long range potentials for Gaussian distributions, and for potentials of class l (2) in the Bernoulli case. Open problems are discussed.