228 resultados para SALT protein


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorescent proteins from the green fluorescent protein family strongly interact with CdSe/ZnS and ZnSe/ZnS nanocrystals at neutral pH. Green emitting CdSe/ZnS nanocrystals and red emitting fluorescent protein dTomato constitute a 72% efficiency FRET system with the largest alteration of the overall photoluminescence profile, following complex formation, observed so far. The substitution of ZnSe/ZnS for CdSe/ZnS nanocrystals as energy donors enabled the use of a green fluorescent protein, GFP5, as energy acceptor. Violet emitting ZnSe/ZnS nanocrystals and green GFP5 constitute a system with 43% FRET efficiency and an unusually strong sensitized emission. ZnSe/ZnS-GFP5 provides a cadmium-free, high-contrast FRET system that covers only the high-energy part of the visible spectrum, leaving room for simultaneous use of the yellow and red color channels. Anisotropic fluorescence measurements confirmed the depolarization of GFP5 sensitized emission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malnutrition modifies resistance to infection by impairing a number of physiological processes including hematopoesis and the immune response. In this study, we examined the production of Interleukin-4 (IL-4) and IL-10 in response to lipopolysaccharide (LPS) and also evaluated the cellularity of the blood, bone marrow, and spleen in a mouse model of protein-energy malnutrition. Two-month-old male Swiss mice were subjected to protein-energy malnutrition (PEM) with a low-protein diet (4%) as compared to the control diet (20%). When the experimental group lost approximately 20% of their original body weight, the animals from both groups received 1.25 mu g of LPS intravenously. The Cells ill the blood, bone marrow, and spleen were counted, and circulating levels of IL-4 and IL-10 were evaluated in animals stimulated with LPS. Cells from the spleen, bone marrow, and peritoneal cavity of non-inoculated animals were collected for Culture to evaluate the production of IL-4 and IL-10 after stimulating these cells with 1.25 mu g of LPS in vitro. Malnourished animals presented leucopenia and a severe reduction in bone marrow, spleen, and peritoneal cavity cellularity before and after Stimulus with LPS. The circulating levels of IL-10 were increased in malnourished animals inoculated with LPS when compared to control animals, although the levels of IL-4 did not differ. In cells cultured with LPS, we observed high levels of IL-10 in the bone marrow cells of malnourished animals. These findings suggest that malnourished mice present a deficient immune response to LPS. These alterations may be partly responsible for the immunodeficiency observed in these malnourished mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmodium vivax Merozoite Surface Protein-3 alpha and 3 beta are members of a family of related merozoite surface proteins that contain a central alanine-rich domain with heptad repeats that is predicted to form alpha-helical secondary and coiled-coil tertiary structures. Seven recombinant proteins representing different regions of MSP-3 alpha and MSP-3 beta of P. vivax were generated to investigate their structure. Circular dichroism spectra analysis revealed that some proteins are folded with a high degree of alpha-helices as secondary structure, whereas other products contain a high content of random coil. Using size exclusion chromatography, we found that the two smaller fragments of the MSP-3 alpha, named CC4 and CC5, predicted to form coiled-coil (CC) structures, eluted at volumes corresponding to molecular weights larger than their monomeric masses. This result suggests that both proteins are oligomeric molecules. Analytical ultracentrifugation experiments showed that the CC5 oligomers are elongated molecules. Together, these data may help to understand important aspects of P. vivax biology. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to verify the capacity of the extracellular matrix (ECM) obtained from bone marrow of malnourished mice to sustain survival and to induce the proliferation of myeloid cells. We also verified the capacity of the tests to interact with in vitro hematopoietic cytokines. Male ""Swiss"" mice were submitted to protein malnutrition with a diet contents of 4% casein until they lost 20% of the original weight, while the group-control was kept with a diet content of 14% of casein. The bone marrow was extracted with 1.0 mg of aprotinin/mL in PBS. The proliferation tests were carried out with myeloid cell line FDCP-1, by the colorimetric method of reduction of the MTT. The obtained ECM from nourished and undernourished mice induced cellular proliferation in vitro. Tests performed with Il-3 and GM-CSF cytokines in a concentration of 10 and 500 rho g/mL displayed synergic and regulatory effects respectively. The ECM obtained from the malnourished group submitted to the binding to GM-CSF demonstrated higher cellular proliferation than the ECM obtained from the control group (p<0.05). The results suggest that the alterations in the composition of ECM of bone marrow caused by malnutrition might lead to modification of the GM-CSF activity modulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sibutramine hydrochloride monohydrate, chemically 1-(4-chlorophenyl)-N,N-dimethyl-alpha-(2-methylpropyl) hydrochloride monohydrate (SB center dot HCl center dot H2O), was approved by the U.S. Food and Drug Administration for the treatment of obesity. The objective of this study was to develop, validate, and compare methods using UV-derivative spectrophotometry (UVDS) and reversed-phase high-performance liquid chromatography (HPLC) for the determination of SB center dot HCl center dot H2O in pharmaceutical drug products. The UVDS and HPLC methods were found to be rapid, precise, and accurate. Statistically, there was no significant difference between the proposed UVDS and HPLC methods. The enantiomeric separation of SB was obtained on an alpha-1 acid glycoprotein column. The R- and S-sibutramine were eluted in < 5 min with baseline separation of the chromatographic peaks (alpha = 1.9 and resolution = 1.9).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The copper-catalyzed dimerization of alkynyltrifluoroborates proceeds readily with good yields. The homo-coupling reaction can be effected in DMSO, in the open air, using Cu(OAc)(2) as catalyst in the absence of any other additives. A variety of functional groups are tolerated. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Food foams such as marshmallow, Chantilly and mousses have behavior and stability directly connected with their microstructure, bubble size distribution and interfacial properties. A high interfacial tension inherent to air/liquid foams interfaces affects its stability, and thus it has a direct impact on processing, storage and product handling. In this work, the interactions of egg albumin with various types of polysaccharides were investigated by drop tensiometry, interfacial rheology and foam stability. The progressive addition of egg albumin and polysaccharide in water induced a drop of the air-water surface tension which was dependent on the pH and polysaccharide type. At pH 4, that is below the isoeletric point of egg albumen (pI = 4.5) the surface tension was decreased from 70 mN/m to 42 mN/m by the presence of the protein, and from 70 mN/m to 43 mN/m, 40 mN/m and 38 mN/m by subsequent addition of xanthan, guar gum and kappa-carrageenan, respectively. At pH 7.5 the surface tension was decreased from 70 mN/m to 43 mN/m by the simultaneous presence of the protein and kappa-carrageenan. However, a higher surface tension of 48 and 50 mN/m was found when xanthan and guar gum were added, respectively, when compared with carrageenan addition. The main role on the stabilization of protein-polysaccharide stabilized interfaces was identified on the elasticity of the interface. Foam stability experiments confirmed that egg-albumin/kappa-carrageenan at pH below the protein isoeletric point are the most efficient systems to stabilize air/water interfaces. These results clearly indicate that protein-polysaccharide coacervation at the air/water interface is an efficient process to increase foam stability. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Green fluorescent protein (GFP) shows remarkable structural stability and high fluorescence; its stability can be directly related to its fluorescence output, among other characteristics. GFP is stable under increasing temperatures, and its thermal denaturation is highly reproducible. Some polymers, such as polyethylene glycol, are often used as modifiers of characteristics of biological macromolecules, to improve the biochemical activity and stability of proteins or drug bioavailability. The aim of this study was to evaluate the thermal stability of GFP in the presence of different PEG molar weights at several concentrations and exposed to constant temperatures, in a range of 70-95 degrees C. Thermal stability was expressed in decimal reduction time. It was observed that the D-values obtained were almost constant for temperatures of 85, 90, and 95 degrees C, despite the PEG concentration or molar weight studied. Even though PEG can stabilize proteins, only at 75 degrees C, PEG 600 and 4,000 g/mol stabilized GFP. (C) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 26: 252-256, 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethylene oxide (EO) is used to sterilize Oxygenator and Tubing applied to heart surgery. Residual levels of EO and its derivatives, ethylene chlorohydrin (ECH) and ethylene glycol (EG), may be hazardous to the patients. Therefore, it must be removed by the aeration process. This study aimed to estimate the minimum aeration time for these devices to attain safe limits for use (avoiding excessive aeration time) and to evaluate the Green Fluorescent Protein (GFP) as a biosensor capable of best indicating the distribution and penetration of EO gas throughout the sterilization chamber. Sterilization cycles of 2, 4, and 8 h were monitored by Bacillus atrophaeus ATCC 9372 as a biological indicator (131) and by the GFP. Residual levels of EO, ECH, and EG were determined by gas chromatography (GC), and the residual dissipation was studied. Safe limits were reached right after the sterilization process for Oxygenator and after 204 h of aeration for Tubing. In the 2 h cycle, the GFP concentration decreased from 4.8 (+/- 3.2)% to 7.5 (+/- 2.5)%. For the 4 h cycle, the GFP concentration decreased from 17.4 (+/- 3.0)% to 21.5 (+/- 6.8)%, and in the 8 h cycle, it decreased from 22.5 (+/- 3.2)% to 23.9 (+/- 3.9)%. This finding showed the potentiality for GFP applications as an EO biosensor. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 9113: 626-630, 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clavulanic acid (CA) is a beta-lactam antibiotic that alone exhibits only weak antibacterial activity, but is a potent inhibitor of beta-lactamases enzymes. For this reason it is used as a therapeutic in conjunction with penicillins and cephalosporins. However, it is a well-known fact that it is unstable not only during its production phase, but also during downstream processing. Therefore, the main objective of this study was the evaluation of CA long-term stability under different conditions of pH and temperature, in the presence of variable levels of different salts, so as to suggest the best conditions to perform its simultaneous production and recovery by two-phase polymer/salt liquid-liquid extractive fermentation. To this purpose, the CA stability was investigated at different values of pH (4.0-8.0) and temperature (20-45 degrees C), and the best conditions were met at a pH 6.0-7.2 and 20 degrees C. Its stability was also investigated at 30 degrees C in the presence of NaCl, Na(2)SO(4), CaCl(2) and MgSO(4) at concentrations of 0.1 and 0.5 M in Mcllvaine buffer (pH 6.5). All salts led to increased CA instability with respect to the buffer alone, and this effect decreased in following sequence: Na(2)SO(4) > MgSO(4) > CaCl(2) > NaCl. Kinetic and thermodynamic parameters of CA degradation were calculated adopting a new model that took into consideration the equilibrium between the active and a reversibly inactivated form of CA after long-time degradation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methods of stabilization and formulation of proteins are important in both biopharmaceutical and biocatalysis industries. Polymers are often used as modifiers of characteristics of biological macromolecules to improve the biochemical activity and stability of proteins or drug bioavailability. Green fluorescent protein (GFP) shows remarkable structural stability and high fluorescence; its stability can be directly related to its fluorescence output, among other characteristics. GFP is stable under increasing temperatures, and its thermal denaturation is highly reproducible. Relative thermal stability was undertaken by incubation of GFP at varying temperatures and GFP fluorescence was used as a reporter for unfolding. At 80 degrees C, DEAE-dextran did not have any effect on GFP fluorescence, indicating that it does not confer stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Papaya (Carica papaya L) fruit has a short shelf life due to fast ripening induced by ethylene, but little is known about the genetic control of ripening and attributes of fruit quality. Therefore, we identified ripening-related genes affected by ethylene using cDNA-AFLP (Amplified Fragment Length Polymorphism of cDNA). Transcript profiling of non-induced and ethylene-induced fruit samples was performed, and 71 differentially expressed genes were identified. Among those genes some involved in ethylene biosynthesis, regulation of transcription, and stress responses or plant defence were found (heat shock proteins, polygalacturonase-inhibiting protein, and acyl-CoA oxidases). Several transcription factors were isolated, and except for a 14-3-3 protein, an AP2 domain-containing factor, a salt-tolerant zinc finger protein, and a suppressor of PhyA-105 1, most of them were negatively affected by ethylene, including fragments of transcripts similar to VRN1, and ethylene responsive factors (ERF). With respect to fruit quality, genes related to cell wall structure or metabolism, volatiles or pigment precursors, and vitamin biosynthesis were also found. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the effect of sodium reduction by partial substitution of sodium chloride (NaCl) with potassium chloride (KCl) on the manufacture of Minas fresh cheese during 21 d of refrigerated storage. Four treatments of low-sodium Minas fresh cheese were manufactured, with partial replacement of NaCl by KCl at 0, 25, 50, and 75% (wt/wt), respectively. The cheeses showed differences in the content of moisture, ash, protein, salt, and lipid contents, as well as on the extent of proteolysis and hardness throughout the storage period. However, no difference was observed among treatments within each storage day tested. The partial substitution of NaCl by KCl decreased up to 51.8% the sodium concentration of the cheeses produced. The consumer test indicated that it is possible to manufacture a low-sodium Minas fresh cheese that is acceptable to consumers by partial substitution of NaCl by KCl at 25% (wt/wt) in the salting step.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Biosurfactant production was investigated using two strains of Bacillus subtilis, one being a reference strain (B. subtilis 1012) and the other a recombinant of this (B. subtilis W1012) made able to produce the green fluorescent protein (GFP). RESULTS: Batch cultivations carried out at different initial levels of glucose (GO) in the presence of 10 g L(-1) casein demonstrated that the reference strain was able to release higher levels of biosurfactants in the medium at 5.0 <= G(0) <= 10 g L(-1) (B(max) = 104-110 mg L(-1)). The recombinant strain exhibited slightly lower levels of biosurfactants(B(max) = 90-104 mg L(-1))but only at higher glucose concentrations (G(0) >= 20 g L(-1)). Under these nutritional conditions, the fluorescence intensity linked to the production of GFP was shown to be associated with the cell concentration even after achievement of the stationary phase. CONCLUSION: The ability of the genetically-modified strain to simultaneously overproduce biosurfactant and GFP even at low biomass concentration makes it an interesting candidate for use as a biological indicator to monitor indirectly the biosurfactant production in bioremediation treatments. (C) 2008 Society of Chemical Industry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the protein folding problem, solvent-mediated forces are commonly represented by intra-chain pairwise contact energy. Although this approximation has proven to be useful in several circumstances, it is limited in some other aspects of the problem. Here we show that it is possible to achieve two models to represent the chain-solvent system. one of them with implicit and other with explicit solvent, such that both reproduce the same thermodynamic results. Firstly, lattice models treated by analytical methods, were used to show that the implicit and explicitly representation of solvent effects can be energetically equivalent only if local solvent properties are time and spatially invariant. Following, applying the same reasoning Used for the lattice models, two inter-consistent Monte Carlo off-lattice models for implicit and explicit solvent are constructed, being that now in the latter the solvent properties are allowed to fluctuate. Then, it is shown that the chain configurational evolution as well as the globule equilibrium conformation are significantly distinct for implicit and explicit solvent systems. Actually, strongly contrasting with the implicit solvent version, the explicit solvent model predicts: (i) a malleable globule, in agreement with the estimated large protein-volume fluctuations; (ii) thermal conformational stability, resembling the conformational hear resistance of globular proteins, in which radii of gyration are practically insensitive to thermal effects over a relatively wide range of temperatures; and (iii) smaller radii of gyration at higher temperatures, indicating that the chain conformational entropy in the unfolded state is significantly smaller than that estimated from random coil configurations. Finally, we comment on the meaning of these results with respect to the understanding of the folding process. (C) 2009 Elsevier B.V. All rights reserved.