315 resultados para Quartz C-axis Fabrics
Resumo:
Angular distributions for the elastic scattering of (8)B, (7)Be, and (6)Li on a (12)C target have been measured at E(lab) = 25.8, 18.8, and 12.3 MeV, respectively. The analyses of these angular distributions have been performed in terms of the optical model using Woods-Saxon and double-folding type potentials. The effect of breakup in the elastic scattering of (8)B + (12)C is investigated by performing coupled-channels calculations with the continuum discretized coupled-channel method and cluster-model folding potentials. Total reaction cross sections were deduced from the elastic-scattering analysis and compared with published data on elastic scattering of other weakly and tightly bound projectiles on (12)C, as a function of energy. With the exception of (4)He and (16)O, the data can be described using a universal function for the reduced cross sections.
Resumo:
The title compound (systematic name: 11-cyclopropyl-4-methyl-5,11-dihydro-6H-dipyrido[3,2-b: 2',3'-e][1,4] diazepin-6-one butanol 0.3-solvate), C15H14N4O center dot 0.3C(4)H(9)OH, was crystallized in a new triclinic pseudopolymorphic form, a butanol solvate, and the crystal structure determined at 150 K. The molecular conformation of this new form differs from that reported previously, although the main intermolecular hydrogen-bond pattern remains the same. N-H center dot center dot center dot O hydrogen bonds [N center dot center dot center dot O = 2.957 (3) angstrom] form centrosymmetric dimers and the crystal packing of this new pseudopolymorph generates infinite channels along the b axis.
Resumo:
The present work shows study of the CO(2) capture by amidines DBN and PMDBD using (13)C solid-state NMR and thermal techniques. The solid state (13)C NMR analyses demonstrate the formation of a single PMDBD-CO(2) product which was assigned to stable bicarbonate. In the case of DBN, it is shown that two DBN-CO(2) products are formed, which are suggested to be stable bicarbonate and unstable carbamate. The role of water in the DBN-CO(2) capture as well as the stability of the products to environmental moisture was also investigated. The results suggest that the carbamate formation is favored in dry DBN, but in the presence of water it decompose to form bicarbonate. Thermal analysis shows a good gravimetric CO(2) absorption of DBN. Release of CO(2) was found to be almost quantitative from the PMDBDH(+) bicarbonate about 110 degrees C.
Resumo:
In the title complex, (C(24)H(20)P)(2)[Sn(C(2)H(3)NO(2)S(3))(3)], the Sn(IV) atom is coordinated by three N-(methylsulfonyl) dithiocarbimate bidentate ligands through the anionic S atoms in a slightly distorted octahedral coordination geometry. There is one half-molecule in the asymmetric unit; the complex is located on a crystallographic twofold rotation axis passing through the cation and bisecting one of the (non-symmetric) ligands, which appears thus disordered over two sites of equal occupancy. In the crystal structure, weak intermolecular C-H center dot center dot center dot O and C-H center dot center dot center dot S interactions contribute to the packing stabilization.
Resumo:
The title compound, C(13)H(9)F(3)N(2)O(2)S, crystallizes with two independent molecules in the asymmetric unit. The central thiourea core is roughly coplanar with the furan and benzene rings, showing O-C-N-C(S) torsion angles of 2.3 (4) and -11.4 (2) degrees and (S) C -N-C-C torsion angles of -2.4 (4) and -28.8 (4) degrees, respectively, in the two independent molecules. The trans-cis geometry of the thiourea fragment is stabilized by an intramolecular N-H center dot center dot center dot O hydrogen bond between the H atom of the cis thioamide and the carbonyl O atom. In the crystal structure, intermolecular N-H center dot center dot center dot S hydrogen bonds form centrosymmetric dimers extending along the b axis.
Resumo:
The title compound, C(19)H(16)N(2)O(2)S, was synthesized from furoyl isothiocyanate and N-benzylaniline in dry acetone and the structure redetermined. The structure [Otazo-Sanchez et al. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211-2218] has been re-determined in order to establish the intramolecular and intermolecular interactions. The thiourea group is in the thioamide form. The thiourea group makes a dihedral angle of 29.2 (6)degrees with the furoyl group. In the crystal structure, molecules are linked by intermolecular C-H center dot center dot center dot O interactions, forming one-dimensional chains along the a axis. An intramolecular N-H center dot center dot center dot O hydrogen bond is also present.
Resumo:
This work reports on the crystallization of amorphous silicon (a-Si) films doped with 1 at. % of nickel. The films, with thicknesses ranging from 10 to 3000 nm, were deposited using the cosputtering method onto crystalline quartz substrates. In order to investigate the crystallization mechanism in detail, a series of undoped a-Si films prepared under the same deposition conditions were also studied. After deposition, all a-Si films were submitted to isochronal thermal annealing treatments up to 1000 degrees C and analyzed by Raman scattering spectroscopy. Based on the present experimental results, it is possible to state that (a) when compared to the undoped a-Si films, those containing 1 at. % of Ni crystallize at temperatures similar to 100 degrees C lower, and that (b) the film thickness influences the temperature of crystallization that, in principle, tends to be lower in films thinner than 1000 nm. The possible reasons associated to these experimental observations are presented and discussed in view of some experimental and thermodynamic aspects involved in the formation of ordered Si-Si bonds and in the development of Ni-silicide phases. (c) 2008 American Institute of Physics.
Resumo:
Given a separable unital C*-algebra C with norm parallel to center dot parallel to, let E-n denote the Banach-space completion of the C-valued Schwartz space on R-n with norm parallel to f parallel to(2)=parallel to < f, f >parallel to(1/2), < f, g >=integral f(x)* g(x)dx. The assignment of the pseudodifferential operator A=a(x,D) with C-valued symbol a(x,xi) to each smooth function with bounded derivatives a is an element of B-C(R-2n) defines an injective mapping O, from B-C(R-2n) to the set H of all operators with smooth orbit under the canonical action of the Heisenberg group on the algebra of all adjointable operators on the Hilbert module E-n. In this paper, we construct a left-inverse S for O and prove that S is injective if C is commutative. This generalizes Cordes' description of H in the scalar case. Combined with previous results of the second author, our main theorem implies that, given a skew-symmetric n x n matrix J and if C is commutative, then any A is an element of H which commutes with every pseudodifferential operator with symbol F(x+J xi), F is an element of B-C(R-n), is a pseudodifferential operator with symbol G(x - J xi), for some G is an element of B-C(R-n). That was conjectured by Rieffel.
Resumo:
This paper concerns the spaces of compact operators kappa(E,F), where E and F are Banach spaces C([1, xi], X) of all continuous X-valued functions defined on the interval of ordinals [1, xi] and equipped with the supremun norm. We provide sufficient conditions on X, Y, alpha, beta, xi and eta, with omega <= alpha <= beta < omega 1 for the following equivalence: (a) kappa(C([1, xi], X), C([1, alpha], Y)) is isomorphic to kappa(C([1,eta], X), C([1, beta], Y)), (b) beta < alpha(omega). In this way, we unify and extend results due to Bessaga and Pelczynski (1960) and C. Samuel (2009). Our result covers the case of the classical spaces X = l(p) and Y = l(q) with 1 < p, q < infinity.
Resumo:
In the title compound, C(12)H(22)O(2), the 4-methyltetrahydropyran-4-ol ring adopts a conformation close to that of a chair and with the two O atoms syn; the cyclohexyl group occupies an equatorial position and adopts a chair conformation. In the crystal packing, supramolecular chains along the b axis are sustained by O-H center dot center dot center dot O hydrogen bonds. These are connected into undulating layers in the ab plane by C-H center dot center dot center dot O interactions.
Resumo:
Objective: The purpose of this study was to evaluate in vitro the Knoop microhardness (Knoop hardness number [KHN]) and the degree of conversion using FT-Raman spectroscopy of a light-cured microhybrid resin composite (Z350-3M-ESPE) Vita shade A3 photopolymerized with a halogen lamp or an argon ion laser. Background Data: Optimal polymerization of resin-based dental materials is important for longevity of restorations in dentistry. Materials and Methods: Thirty specimens were prepared and inserted into a disc-shaped polytetrafluoroethylene mold that was 2.0 mm thick and 3 mm in diameter. The specimens were divided into three groups (n = 10 each). Group 1 (G1) was light-cured for 20 sec with an Optilux 501 halogen light with an intensity of 1000 mW/cm(2). Group 2 (G2) was photopolymerized with an argon laser with a power of 150 mW for 10 sec, and group 3 (G3) was photopolymerized with an argon laser at 200 mW of power for 10 sec. All specimens were stored in distilled water for 24 h at 37 degrees C and kept in lightproof containers. For the KHN test five indentations were made and a depth of 100 mu m was maintained in each specimen. One hundred and fifty readings were obtained using a 25-g load for 45 sec. The degree of conversion values were measured by Raman spectroscopy. KHN and degree of conversion values were obtained on opposite sides of the irradiated surface. KHN and degree of conversion data were analyzed by one-way ANOVA and Tukey tests with statistical significance set at p < 0.05. Results: The results of KHN testing were G1 = 37.428 +/- 4.765; G2 = 23.588 +/- 6.269; and G3 = 21.652 +/- 4.393. The calculated degrees of conversion (DC%) were G1 = 48.57 +/- 2.11; G2 = 43.71 +/- 3.93; and G3 = 44.19 +/- 2.71. Conclusions: Polymerization with the halogen lamp ( G1) attained higher microhardness values than polymerization with the argon laser at power levels of 150 and 200 mW; there was no difference in hardness between the two argon laser groups. The results showed no statistically significant different degrees of conversion for the polymerization of composite samples with the two light sources tested.
Resumo:
The alternative low-spin states of Fe3+ and Fe2+ cytochrome c induced by SDS or AOT/hexane reverse micelles exhibited the heme group in a less rhombic symmetry and were characterized by electron paramagnetic resonance, UV-visible, CD, magnetic CD, fluorescence, and Raman resonance. Consistent with the replacement of Met 80 by another strong field ligand at the sixth heme iron coordination position, Fe3+ ALSScytc exhibited 1-nm Soret band blue shift and e enhancement accompanied by disappearance of the 695-nm charge transfer band. The Raman resonance, CD, and magnetic CD spectra of Fe3+ and Fe2+ ALSScytc exhibited significant changes suggestive of alterations in the heme iron microenvironment and conformation and should not be assigned to unfold because the Trp(59) fluorescence remained quenched by the neighboring heme group. ALSScytc was obtained with His(33) and His(26) carboxyethoxylated horse cytochrome c and with tuna cytochrome c (His(33) replaced by Asn) pointing out Lys(79) as the probable heme iron ligand. Fe3+ ALSScytc retained the capacity to cleave tert-butylhydroperoxide and to be reduced by dithiothreitol and diphenylacetaldehyde but not by ascorbate. Compatible with a more open heme crevice, ALSScytc exhibited a redox potential similar to 200 mV lower than the wild-type protein (1220 mV) and was more susceptible to the attack of free radicals.
Resumo:
In the title hydrate, C(16)H(15)BrO(2)SSe center dot H(2)O, the sulfinyl O atom lies on the opposite side of the molecule to the Se and carbonyl O atoms. The benzene rings form a dihedral angle of 51.66 (17)degrees and are splayed with respect to each other. The observed conformation allows the water molecules to bridge sulfinyl O atoms via O-H center dot center dot center dot O hydrogen bonds, generating a linear supramolecular chain along the b axis; the chain is further stabilized by C-H center dot center dot center dot O contacts. The chains are held in place in the crystal structure by C center dot center dot center dot H center dot center dot center dot pi and C-Br center dot center dot center dot pi interactions.
Resumo:
Ethanol oxidation has been studied on stepped platinum single crystal electrodes in acid media using electrochemical and Fourier transform infrared (FTIR) techniques. The electrodes used belong to two different series of stepped surfaces: those having (111) terraces with (100) monoatomic steps and those with (111) terraces with (110) monoatomic steps. The behaviors of the two series of stepped surfaces for the oxidation of ethanol are very different. On the one hand, the presence of (100) steps on the (111) terraces provides no significant enhancement of the activity of the surfaces. On the other hand, (110) steps have a double effect on the ethanol oxidation reaction. At potentials below 0.7 V, the step catalyzes the C-C bond cleavage and also the oxidation of the adsorbed CO species formed. At higher potentials, the step is not only able to break the C-C bond, but also to catalyze the oxidation of ethanol to acetic acid and acetaldehyde. The highest catalytic activity from voltammetry for ethanol oxidation was obtained with the Pt(554) electrode.
Resumo:
This paper describes the preparation of a Pt-Rh alloy surface electrodeposited on Pt electrodes and its electrocatalytic characterization for methanol oxidation. The X-ray photoelectronic spectroscopy ( XPS) results demonstrate that the surface composition is approximately 24 at-% Rh and 76 % Pt. The cyclic voltammetry (CV) and electrochemical quartz crystal (EQCN) results for the alloy were associated, for platinum, to the well known profile in acidic medium. For Rh, on the alloy, the generation of rhodium hydroxide species (Rh(OH)(3) and RhO(OH)(3)) was measured. During the successive oxidation-reduction cycles the mass returns to its original value, indicating the reversibility of the processes. It was not observed rhodium dissolution during the cycling. The 76/24 at % Pt-Rh alloy presented singular electrocatalytic activity for methanol electrooxidation, which started at more negative potentials compared to pure Pt (70 mV). During the sweep towards more negative potentials, there is only weak CO re-adsorption on both Rh and Pt-Rh alloy surfaces, which can be explained by considering the interaction energy between Rh and CO.