116 resultados para POTENT ODORANTS
Resumo:
Introduction: Extensive experimental studies and clinical evidence (Metabolic Efficiency with Ranzolazine for Less Ischemia in Non-ST-Elevation Acute Coronary Syndrome Thrombolysis in Myocardial Infarction-36 [MERLIN TIMI-36] trial) indicate potential antiarrhythmic efficacy of the antianginal agent ranolazine. Delivery of agents into the pericardial space allows high local concentrations to be maintained in close proximity to myocardial tissue while systemic effects are minimized. Methods and Results: The effects of intrapericardial (IPC) administration of ranolazine (50-mg bolus) on right atrial and right ventricular effective refractory periods (ERP), atrial fibrillation threshold, and ventricular fibrillation threshold were determined in 17 closed-chest anesthetized pigs. IPC ranolazine increased atrial ERP in a time-dependent manner from 129 +/- 5.14 to 186 +/- 9.78 ms (P < 0.01, N = 7) but did not significantly affect ventricular ERP (from 188.3 +/- 4.6 to 201 +/- 4.3 ms (NS, N = 6). IPC ranolazine increased atrial fibrillation threshold from 4.8 +/- 0.8 to 28 +/- 2.3 mA (P < 0.03, N = 6) and ventricular fibrillation threshold (from 24 +/- 3.56 baseline to 29.33 +/- 2.04 mA at 10-20 minutes, P < 0.03, N = 6). No significant change in mean arterial pressure was observed (from 92.8 +/- 7.1 to 74.8 +/- 7.5 mm Hg, P < 0.125, N = 5, at 7 minutes). Conclusions: IPC ranolazine exhibits striking atrial antiarrhythmic actions as evidenced by increases in refractoriness and in fibrillation inducibility without significantly altering mean arterial blood pressure. Ranolazine`s effects on the atria appear to be more potent than those on the ventricles.
Resumo:
The physiological effects of nitroglycerin as a potent vasodilator have long been documented. However, the molecular mechanisms by which nitroglycerin exerts its biological functions are still a matter of intense debate. Enzymatic pathways converting nitroglycerin to vasoactive compounds have been identified, but none of them seems to fully account for the reported clinical observations. Here, we demonstrate that nitroglycerin triggers constitutive nitric oxide synthase (NOS) activation, which is a major Source of NO responsible for low-dose (1-10 nM) nitroglycerin-induced vasorelaxation. Our studies in cell cultures, isolated vessels, and whole animals identified endothelial NOS activation as a fundamental requirement for nitroglycerin action at pharmacologically relevant concentrations in WT animals.
Resumo:
Epidemiological studies have provided evidence that high consumption of tomatoes effectively reduces the risk of reactive oxygen species (ROS)-mediated diseases such as cancer. Tomatoes are rich sources of lycopene, a potent singlet oxygen-quenching carotenoid. In addition to its antioxidant properties, lycopene shows an array of biological effects including antimutagenic and anticarcinogenic activities. In the present study, the chemopreventive action of lycopene was examined on DNA damage and clastogenic or aneugenic effects of H2O2 and n-nitrosodiethylamine (DEN) in the metabolically competent human hepatoma cell line (HepG2 cells). Lycopene at concentrations of 10. 25, and 50 mu M, was tested under three protocols: before, simultaneously, and after treatment with the mutagen, using the comet and micronucleus assays. Lycopene significantly reduced the genotoxicity and mutagenicity of H2O2 in all of the conditions tested. For DEN, significant reductions of primary DNA damage (comet assay) were detected when the carotenoid (all of the doses) was added in the cell culture medium before or simultaneously with the mutagen. In the micronucleus test, the protective effect of lycopene was observed only when added prior to DEN treatment. In conclusion, our results suggest that lycopene is a suitable agent for preventing chemically-induced DNA and chromosome damage. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Background: Widespread use of prostate-specific antigen screening has resulted in younger and healthier men being diagnosed with prostate cancer. Their demands and expectations of surgical intervention are much higher and cannot be adequately addressed with the classic trifecta outcome measures. Objective: A new and more comprehensive method for reporting outcomes after radical prostatectomy, the pentafecta, is proposed. Design, setting, and participants: From January 2008 through September 2009, details of 1111 consecutive patients who underwent robot-assisted radical prostatectomy performed by a single surgeon were retrospectively analyzed. Of 626 potent men, 332 who underwent bilateral nerve sparing and who had 1 yr of follow-up were included in the study group. Measurements: In addition to the traditional trifecta outcomes, two perioperative variables were included in the pentafecta: no postoperative complications and negative surgical margins. Patients who attained the trifecta and concurrently the two additional outcomes were considered as having achieved the pentafecta. A logistic regression model was created to evaluate independent factors for achieving the pentafecta. Results and limitations: Continence, potency, biochemical recurrence-free survival, and trifecta rates at 12 mo were 96.4%, 89.8%, 96.4%, and 83.1%, respectively. With regard to the perioperative outcomes, 93.4% had no postoperative complication and 90.7% had negative surgical margins. The pentafecta rate at 12 mo was 70.8%. On multivariable analysis, patient age (p = 0.001) was confirmed as the only factor independently associated with the pentafecta. Conclusions: A more comprehensive approach for reporting prostate surgery outcomes, the pentafecta, is being proposed. We believe that pentafecta outcomes more accurately represent patients` expectations after minimally invasive surgery for prostate cancer. This approach may be beneficial and may be used when counseling patients with clinically localized disease. (C) 2011 European Association of Urology. Published by Elsevier B. V. All rights reserved.
Resumo:
The trematode Schistosoma mansoni is the primary cause of schistosomiasis, a devastating neglected tropical disease that affects 200 million individuals. Identifying novel therapeutic targets for the treatment of schistosomiasis is therefore of great public interest. The catecholamines norepinephrine (NE) and dopamine (DA) are essential for the survival of the parasite as they cause muscular relaxation and a lengthening in the parasite and thereby control movement. Here we characterize a novel dopamine/norepinephrine transporter (SmDAT) gene transcript, from S. mansoni. The SmDAT is expressed in the adult form and in the sporocyst form (infected snails) of the parasite, and also in the egg and miracidium stage. It is absent in the cercariae stage but curiously a transcript missing the exon encoding transmembrane domain 8 was identified in this stage. Heterologous expression of the cDNA in mammalian cells resulted in saturable, dopamine transport activity with an apparent affinity for dopamine comparable to that of the human dopamine transporter. Efflux experiments reveal notably higher substrate selectivity compared with its mammalian counterparts as amphetamine is a much less potent efflux elicitor against SmDAT compared to the human DAT. Pharmacological characterization of the SmDAT revealed that most human DAT inhibitors including psychostimulants such as cocaine were significantly less potent in inhibiting SmDAT. Like DATs from other simpler organisms the pharmacology for SmDAT was more similar to the human norepinephrine transporter. We were not able to identify other dopamine transporting carriers within the completed parasite genome and we hypothesize that the SmDAT is the only catecholamine transporter in the parasite and could be responsible for not only clearing DA but also NE. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A new gold(I) complex with 2-mercaptothiazoline (MTZ) with the coordination formula [AuCN(C(3)H(5)NS(2))] was synthesized and characterized by chemical and spectroscopic measurements, OFT studies and biological assays. Infrared (IR) and (1)H, (13)C and (15)N nuclear magnetic resonance (NMR) spectroscopic measurements indicate coordination of the ligand to gold(I) through the nitrogen atom. Studies based on OFT confirmed nitrogen coordination to gold(I) as a minimum of the potential energy surface with calculations of the hessians showing no imaginary frequencies. Thermal decomposition starts at temperatures near 160 degrees C, leading to the formation of Au as the final residue at 1000 degrees C. The gold(I) complex with 2-mercaptothiazoline (Au-MTZ) is soluble in dimethyl sulfoxide (DMSO), and is insoluble in water, methanol, ethanol, acetonitrile and hexane. The antibacterial activities of the Au-MTZ complex were evaluated by an antibiogram assay using the disc diffusion method. The compound showed an effective antibacterial activity against Staphylococcus aureus (Gram-positive) and Escherichia coli and Pseudomonas aeruginosa (Gram-negative) bacterial cells. Biological analysis for evaluation of the cytotoxic effect of the Au-MTZ complex was performed using HeLa cells derived from human cervical adenocarcinoma. The complex presented a potent cytotoxic activity, inducing 85% of cell death at a concentration of 2.0 mu mol L(-1). (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
CpG oligodeoxynucleotides (ODN) have shown to be potent immunoadjuvants for several pathogens, but there is limited information concerning their use in immunization protocols against neosporosis. This study aimed to evaluate the potential of CpG-ODN combined with Neosporar lysate antigen (NLA) or excreted-secreted antigen (NcESA) to induce protective immune response against Neospora caninum infection in mice. C57BL/6 mice were vaccinated subcutaneously three times at 2-week intervals with NLA, NLA+CpG, NcESA, NcESA+CpG, CpG (adjuvant control) or PBS (infection control). Serological assays showed an increased specific IgG2a response in animals immunized with either antigen plus adjuvant and elevated levels of the IgG1 isotype in those vaccinated with antigens alone. Splenocyte proliferative responses upon antigen stimulation were higher in groups immunized with NLA OF NcESA combined with CpG, showing increased IL-12 levels. Also, mice vaccinated with NcESA or NcESA+CpG demonstrated higher IFN-gamma levels and IFN-gamma/IL-10 ratio. After lethal challenge, mice immunized with NLA+CpG or NLA had lower Morbidity score and body weight changes in comparison to other groups, and animals did not succumb during acute infection. In contrast, NcESA+CpG or NcESA groups exhibited the highest morbidity scores, body weight impairment and mortality rates, associated with greatest brain parasite burden and inflammation. In conclusion, CpG-ODN was able to induce a Th1-type humoral immune response with predominant IgG2a levels for either NLA or NcESA, but resulting in an effective Th1-driven cellular immune response and total Protection only when combined with NLA. Vaccination with NcESA alone or combined with CpG resulted in a strong cellular immune response associated with high levels of IFN-gamma and inflammation, rendering mice more susceptible to parasite challenge. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Background/Aims. The transcription factor nuclear factor-kappa B (NF-kappa B) exerts a pivotal role in the pathogenesis of hepatic ischemia/reperfusion (I/R) injury. Caffeic acid phenyl ester (CAPE), a potent and specific NF-kappa B inhibitor, presents protective effects on I/R injury in some tissues. This study aimed to evaluate the effect of CAPE on hepatic I/R injury in rats. Materials and methods. Wistar rats were submitted to a sham operation, 60 min ischemia, or 60 min ischemia plus saline or CAPE treatment followed by 6 h reperfusion. Liver tissue injury was evaluated by alanine aminotransferase, aspartate aminotransferase, and tissue glutathione measurement, and histological damage score. Apoptotic hepatocytes were determined by the transferase-mediated dUTP-biotin nick-end labeling assay. Hepatic neutrophil accumulation was assessed by the naphthol method. Lipid peroxidation and NF-kappa B activation were evaluated by 4-hydroxynonenal and NF-kappa B p65 immunohistochemistry, respectively. Results. Animals submitted to ischemia showed a marked increase of alanine aminotransferase and aspartate aminotransferase after reperfusion, but with lower levels in CAPE group. Tissue glutathione content declined gradually during ischemia to reperfusion and was partially recovered with CAPE treatment. The histological damage score, apoptosis index, and neutrophil infiltration, as well as 4-hydroxynonenal and NF-kappa B p65 nuclear labeling, were higher in the liver of animals submitted to I/R compared to the ischemia group. However, the CAPE treatment significantly reduced all of these alterations. Conclusions. CAPE was able to protect the liver against normothermic I/R injury in rats. This effect may be associated with the inhibition of the NF-kappa B signaling pathway and decrease of the acute inflammatory response following I/R in the liver. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Background/Aims. Nuclear factor kappa B (NF kappa B) plays important role in the pathogenesis of skeletal muscle ischemia/reperfusion (I/R) injury. Caffeic acid phenyl ester (CAPE), a potent NF kappa B inhibitor, exhibits protective effects on I/R injury in some tissues. In this report, the effect of CAPE on skeletal muscle I/R injury in rats was studied. Methods. Wistar rats were submitted to sham operation, 120-min hindlimb ischemia, or 120-min hindlimb ischemia plus saline or CAPE treatment followed by 4-h reperfusion. Gastrocnemius muscle injury was evaluated by serum aminotransferase levels, muscle edema, tissue glutathione and malondialdehyde measurement, and scoring of histological damage. Apoptotic nuclei were determined by a terminal uridine deoxynucleotidyl transferase dUTP nick end labeling assay. Muscle neutrophil and mast cell accumulation were also assessed. Lipoperoxidation products and NF kappa B were evaluated by 4-hydroxynonenal and NF kappa B p65 immunohistochemistry, respectively. Results. Animals submitted to ischemia showed a marked increase in aminotransferases after reperfusion, but with lower levels in the CAPE group. Tissue glutathione levels declined gradually during ischemia to reperfusion, and were partially recovered with CAPE treatment. The histological damage score, muscle edema percentage, tissue malondialdehyde content, apoptosis index, and neutrophil and mast cell infiltration, as well as 4-hydroxynonenal and NF kappa B p65 labeling, were higher in animals submitted to I/R compared with the ischemia group. However, the CAPE treatment significantly reduced all of these alterations. Conclusions. CAPE was able to protect skeletal muscle against I/R, injury in rats. This effect may be associated with the inhibition of the NF kappa B signaling pathway and decrease of the tissue inflammatory response following skeletal muscle I/R. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
center dot Citalopram (CITA) pharmacokinetics are enantioselective in healthy volunteers and the metabolism of (+)-(S)-CITA to (+)-(S)-DCITA is dependent on CYP2C19. Omeprazole is a potent CYP2C19 inhibitor. WHAT THIS STUDY ADDS center dot This study indicates that omeprazole induces a loss of enantioselectivity in the CITA pharmacokinetics because of the selective inhibition of (+)-(S)-CITA metabolism. AIM The study assessed the influence of omeprazole on the kinetic disposition of the (+)-(S)-citalopram (CITA) and (-)-(R)-CITA enantiomers in healthy volunteers. METHODS In a cross-over study, healthy volunteers (n = 9) phenotyped as extensive metabolizers of CYP2C19 and CYP2D6 and with an oral midazolam clearance ranging from 10.9 to 149.3 ml min-1 kg-1 received a single dose of racemic CITA (20 mg orally) in combination or not with omeprazole (20 mg day-1 for 18 days). Serial blood samples were collected up to 240 h after CITA administration. CITA and demethylcitalopram (DCITA) enantiomers were analyzed by LC-MS/MS using a Chiralcel (R) OD-R column. RESULTS The kinetic disposition of CITA was enantioselective in the absence of treatment with omeprazole, with the observation of a greater proportion of plasma (-)-(R)-CITA [AUC S : R ratio of 0.53 (95% CI 0.41, 0.66) for CITA and 1.08 (95% CI 0.80, 1.76) for DCITA] than (+)-(S)-CITA. Racemic CITA administration to healthy volunteers in combination with omeprazole showed a loss of enantioselectivity in CITA pharmacokinetics with an increase of approximately 120% in plasma (+)-(S)-CITA concentrations [AUC S : R ratio of 0.95 (95% CI 0.72, 1.10) for CITA and 0.95 (95% CI 0.44, 1.72) for DCITA]. CONCLUSIONS The administration of multiple doses of omeprazole preferentially inhibited (+)-(S)-CITA metabolism in healthy volunteers. Although omeprazole increased plasma concentrations of (+)-(S)-CITA by approximately 120%, it is difficult to evaluate the clinical outcome because the range of plasma CITA concentrations related to maximum efficacy and minimum risk of adverse effects has not been established.
Resumo:
Endothelin-1 (ET-1) and urotensin-II (U-II) are the most potent constrictors of human vessels. Although the cavernosal tissue is highly responsive to ET-1, no information exists on the effects of U-II on cavernosal function. The aim of this study was to characterize ET-1 and U-II responses in corpora cavernosa from rats and mice. Male Wistar rats and C57/BL6 mice were used at 13 weeks. Cumulative concentration-response curves to ET-1, U-II, and IRL-1620, an ET(B) agonist, were performed. ET-1 increased force generation in cavernosal strips from mice and rats, but no response to U-II was observed in the presence or absence of N(omega)-nitro-L-arginine methyl ester (L-NAME), or in strips prestimulated with 20 mM KCI. IRL-1620 did not induce cavernosal contraction even in presence of L-NAME, but induced a cavernosal relaxation that was greater in rats than mice. No relaxation responses to U-II were observed in cavernosal strips precontracted with phenylephrine. mRNA expression of ET-1, ET(A), ET(B), and U-II receptors, but not U-II was observed in cavernosal strips. ET-1, via ET(A) receptors activation, causes contractile responses in cavernosal strips from rats and mice, whereas ET(B) receptor activation produces relaxation. Although the cavernosal tissue expresses U-II receptors, U-II does not induce contractile responses in corpora cavernosa from mice or rats. J Am Soc Hypertens 2008;2(6): 439-447. Published by Elsevier Inc. on behalf of the American Society of Hypertension.
Resumo:
The 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) is an endogenous ligand of peroxisome proliferator-activated receptors gamma (PPAR-gamma) and is now recognized as a potent anti-inflammatory mediator. However, information regarding the influence of 15d-PGJ(2) on inflammatory pain is still unknown. In this study, we evaluated the effect of 15d-PGJ(2) upon inflammatory hypernociception and the mechanisms involved in this effect. We observed that intraplantar administration of 15d-PGJ(2) (30-300 ng/paw) inhibits the mechanical hypernociception induced by both carrageenan (100 mu g/paw) and the directly acting hypernociceptive mediator, prostaglandin E-2 (PGE(2)). Moreover, 15d-PGJ(2) [100 ng/temporomandibular joint (TMJ)] inhibits formalininduced TMJ hypernociception. On the other hand, the direct administration of 15d-PGJ(2) into the dorsal root ganglion was ineffective in blocking PGE(2)- induced hypernociception. In addition, the 15d-PGJ(2) antinociceptive effect was enhanced by the increase of macrophage population in paw tissue due to local injection of thioglycollate, suggesting the involvement of these cells on the 15d-PGJ(2)-antinociceptive effect. Moreover, the antinociceptive effect of 15d-PGJ(2) was also blocked by naloxone and by the PPAR-gamma antagonist 2-chloro-5-nitro-N-phenylbenzamide (GW9662), suggesting the involvement of peripheral opioids and PPAR-gamma receptor in the process. Similar to opioids, the 15d-PGJ(2) antinociceptive action depends on the nitric oxide/cGMP/protein kinase G (PKG)/K-ATP(+) channel pathway because it was prevented by the pretreatment with the inhibitors of nitric-oxide synthase (N-G-monomethyl-L-arginine acetate), guanylate cyclase] 1H-(1,2,4)-oxadiazolo(4,2-alpha) quinoxalin-1- one[, PKG [indolo[2,3-a]pyrrolo[3,4-c]carbazole aglycone (KT5823)], or with the ATP-sensitive potassium channel blocker glibenclamide. Taken together, these results demonstrate for the first time that 15d-PGJ(2) inhibits inflammatory hypernociception via PPAR-gamma activation. This effect seems to be dependent on endogenous opioids and local macrophages.
Resumo:
Introduction. Endothelin-1 (ET-1), a potent vasoconstrictor peptide, acts mainly through the Gprotein-coupled ET(A) receptor (ET(A)R). Increased vascular ET-1 production and constrictor sensitivity have been observed in various cardiovascular diseases, including hypertension, as well as erectile dysfunction. The internal pudendal artery (IPA) supplies blood to the vagina and clitoris. Inadequate blood flow through the IPA may lead to insufficient vaginal engorgement and clitoral tumescence. Aim. Characterize the effects of ET-1 on the IPA and clitoral artery (CA). Methods. IPA and CA from female Sprague Dawley rats (225-250 g) were mounted in myograph chambers. Arterial segments were submitted to increasing concentrations of ET-1 (10-10-10-6 M). Segments were incubated with the ET(A)R antagonist, atrasentan (10-8 M) or the Rho-kinase inhibitor, Y-27632 (10-6 M) 30 minutes prior to agonist exposure. All E(max) values are expressed as % KCl-induced maximal contraction. ET(A)R, RhoA, and Rho-kinase expression from IPA was evaluated by Western blot. mRNA of preproET-1, ET(A)R, ET(B)R, RhoA, and Rho-kinase were measured by real time PCR. Main Outcome Measures. ET-1 constrictor sensitivity in IPA and CA, protein expression and messenger RNA levels of ET-1-mediated constriction components. Results. ET-1 concentration-dependently contracted IPA (% Contraction and pD2, respectively: 156 +/- 18, 8.2 +/- 0.1) and CA (163 +/- 12, 8.8 +/- 0.08), while ET(A)R antagonism reduced ET-1-mediated contraction (IPA: 104 +/- 23, 6.4 +/- 0.2; CA: 112 +/- 17, 6.6 +/- 0.08). Pretreatment with Y-27632 significantly shifted ET-1 pD2 in IPA (108 +/- 24, 7.9 +/- 0.1) and CA (147 +/- 58 and 8.0 +/- 0.25). Protein expression of ET(A)R, ET(B)R, RhoA, and Rho-kinase were detected in IPA. IPA and CA contained preproET-1, ET(A)R, ET(B)R, RhoA, and Rho-kinase message. Conclusion. We observed that the IPA and CA are sensitive to ET-1, signaling through the ET(A)R and Rho-kinase pathway. These data indicate that ET-1 may play a role in vaginal and clitoral blood flow and may be important in pathologies where ET-1 levels are elevated. Allahdadi KJ, Hannan JL, Tostes RC, and Webb RC. Endothelin-1 induces contraction of female rat internal pudendal and clitoral arteries through ETA receptor and Rho-kinase activation. J Sex Med 2010;7:2096-2103.
Resumo:
To study and characterize the in vivo effect of the lectin from Luetzelburgia auriculata seed on acute inflammation models. The lectin was purified from the crude saline extract by affinity chromatography on a guar-gum matrix. Native, heat-treated, and digested lectin was evaluated for anti-inflammatory activity by using peritonitis and paw edema models. The anti-inflammatory activity was characterized by intravital microscopy, nitric oxide production, and myeloperoxidase activity. The lectin exhibited anti-inflammatory activity (2 mg/kg) on both models, reducing local myeloperoxidase activity. Galactose or heat treatment (100A degrees C, 10 min) reduced anti-inflammatory action. Anti-inflammation involves the inhibition of adhesion and rolling of leukocytes along with augmentation of nitric oxide in serum. The lectin inhibited the edematogenic effect of histamine and prostaglandins (PGE2) but did not alter the chemoattractant effect of IL-8. The results indicate that this lectin is a potent anti-inflammatory molecule. Its effects engage diverse modulatory events.
Resumo:
The aim of this study was to unravel the mechanisms by which interleukin (IL)-10, a potent pleiotropic cytokine, modulates alveolar bone homeostasis in C57BL/6 wild-type (WT) and IL-10 knockout (IL-10 KO) mice, evaluated at 8, 24, and 48 wk of age. Interleukin-10 KO mice presented significant alveolar bone loss when compared with WT mice, and this was not associated with changes in leukocyte counts or bacterial load. The levels of expression of messenger RNA (mRNA) for tumor necrosis factor-alpha (TNF-alpha), IL-1 beta, IL-6, transforming growth factor-beta (TGF-beta), receptor activator of nuclear factor kappa B ligand (RANKL), osteoprotegerin (OPG), and matrix metalloproteinase 13 (MMP13) were similar between both strains, whereas a significant decrease of tissue inhibitor of metalloproteinase 1 (TIMP1) mRNA expression was found at 48 wk in IL-10 KO mice. The osteoblast markers core binding factor alpha1 (CBFA1) and type I collagen (COL-I) were expressed at similar levels in both strains, whereas the levels of alkaline phosphatase (ALP) and osteocalcin (OCN), and those of the osteocyte markers phosphate-regulating gene endopeptidases (PHEX) and dentin matrix protein 1 (DMP1) were significantly lower in IL-10 KO mice. Our results demonstrate that the alveolar bone loss in the absence of IL-10 was associated with a reduced expression of osteoblast and osteocyte markers, an effect independent of microbial, inflammatory or bone-resorptive pathways.