125 resultados para Extracellular Matrix Accumulation
Resumo:
Several lines of evidence suggest that angiotensin II (A-II) participates in the postnatal development of the kidney in rats. Many effects of A-II are mediated by mitogen-activated protein kinase (MAPK) pathways. This study investigated the influence that treatment with losartan during lactation has on MAPKs and on A-II receptor types 1 (AT(1)) and 2 (AT(2)) expression in the renal cortices of the offspring of dams exposed to losartan during lactation. In addition, we evaluated the relationship between such expression and changes in renal function and structure. Rat pups from dams receiving 2% sucrose or losartan diluted in 2% sucrose (40 mg/dl) during lactation were killed 30 days after birth, and the kidneys were removed for histological, immunohistochemical, and Western blot analysis. AT(1) and AT(2) receptors and p-p38, c-Jun N-terminal kinases (p-JNK) and extracellular signal-regulated protein kinases (p-ERK) expression were evaluated using Western blot analysis. The study-group rats presented an increase in AT(2) receptor and MAPK expression. In addition, these rats also presented lower glomerular filtration rate (GFR), greater albuminuria, and changes in renal structure. In conclusion, newborn rats from dams exposed to losartan during lactation presented changes in renal structure and function, which were associated with AT(2) receptor and MAPK expression in the kidneys.
Resumo:
The D-mannose binding lectin ArtinM from Artocarpus integrifolia, previously known as KM+ and artocarpin. is considered a stimulant of Th1-type immunity, which is able to confer resistance to some intracellular pathogens. In addition, ArtinM induces neutrophil migration by haptotaxis through simultaneous interactions of its carbohydrate recognition domains (CRDs) with glycans expressed on the extracellular matrix and the neutrophil surface. In the present study, we have expanded the characterization of ArtinM as a neutrophil activator. Exposure of neutrophils to ArtinM for 15 min resulted in tyrosine phosphorylation of intracellular proteins, a process that was selectively inhibited by D-mannose or mannotriose. Shortly after stimulation, neutrophils secreted high levels of LTB(4) and underwent shedding of L-selectin from their surface. Exposure to ArtinM enhanced neutrophil functions, such as respiratory burst and zymozan and Listeria monocytogenes phagocytosis. In addition, ArtinM-stimulated neutrophils displayed increased CXCL-8 secretion and TLR2 gene transcription. These results demonstrate that ArtinM is able to induce potent neutrophil activation, a feature that should be strongly considered in the assessment of the lectin capacity to confer resistance against infections. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The mechanism of isoproterenol-induced myocardial damage is unknown, but a mismatch of oxygen supply vs. demand following coronary hypotension and myocardial hyperactivity is the best explanation for the complex morphological alterations observed. Severe alterations in the structural integrity of the sarcolemma of cardiomyocytes have been demonstrated to be caused by isoproterenol. Taking into account that the sarcolemmal integrity is stabilized by the dystrophin-glycoprotein complex (DGC) that connects actin and laminin in contractile machinery and extracellular matrix and by integrins, this study tests the hypothesis that isoproterenol affects sarcolemmal stability through changes in the DGC and integrins. We found different sensitivity of the DGC and integrin to isoproterenol subcutaneous administration. Immunofluorescent staining revealed that dystrophin is the most sensitive among the structures connecting the actin in the cardiomyocyte cytoskeleton and the extracellular matrix. The sarcomeric actin dissolution occurred after the reduction or loss of dystrophin. Subsequently, after lysis of myofilaments, gamma-sarcoglycan, beta-dystroglycan, beta 1-integrin, and laminin alpha-2 expressions were reduced followed by their breakdown, as epiphenomena of the myocytolytic process. In conclusion, administration of isoproterenol to rats results in primary loss of dystrophin, the most sensitive among the structural proteins that form the DGC that connects the extracellular matrix and the cytoskeleton in cardiomyocyte. These changes, related to ischaemic injury, explain the severe alterations in the structural integrity of the sarcolemma of cardiomyocytes and hence severe and irreversible injury induced by isoproterenol.
Resumo:
Injury triggers inflammatory responses and tissue repair. Several treatments are currently in use to accelerate healing: however, more efficient formulations are still needed for specific injuries. Since unsaturated fatty acids modulate immune responses, we aimed to evaluate their therapeutic effects on wound healing. Skin wounds were induced in BALB/c mice and treated for 5 days with n-3, n-9 fatty acids or vehicle (control). n-9 treated mice presented smaller wounds than control and n-3 at 120 h post-surgery (p.s.). Collagen III mRNA,TIMP1 and MMP9 were significantly elevated in n-9 group compared to n-3 or vehicle at 120 h p.s. Among the inflammatory mediators studied we found that IL-10, TNF-alpha and IL-17 were also higher in n-9 treated group compared to n-3 or vehicle at 120 h p.s. Interestingly, COX2 had decreased expression on wound tissue treated with n-9. Inflammatory infiltrate analysis revealed diminished frequency of CD4(+), CD8(+) and CD11b(+) cells in n-9 wounds at 24 and 120 h p.s., which was not related to cell death, since in vitro apoptosis experiments did not show any cell damage after fatty acids administration. These results suggested that unsaturated fatty acids, specifically n-9, modulate the inflammation in the wound and enhance reparative response in vivo. n-9 may be a useful tool in the treatment of cutaneous wounds. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Histopathological alterations in human aneurysms and dissections of the thoracic ascending aorta include areas of mucoid degeneration within the medial layer, colocalized with areas of cell disappearance and disruption of extracellular matrix elastic and collagen fibers. We studied the presence of matrix metalloproteinases in relation to their capacity to diffuse through the tissue or to be retained in areas of mucoid degeneration in aneurysms and dissections of the ascending aorta. Ascending aortas from 9 controls, 33 patients with aneurysms, and 14 with acute dissections, all collected at surgery, were analyzed. The morphological aspect was similar whatever the etiology or phenotypic expression of the pathological aortas, involving areas of extracellular matrix breakdown and cell rarefaction associated with mucoid degeneration. Release of proMMP-2, constitutively expressed by smooth muscle cells, was not different between controls and aneurysmal aortas, whereas the aneurysmal aortas released more of the active form. Release of pro and active MMP-9 was also similar between controls and aneurysmal aortas. Immunohistochemical staining of MMP-2 and MMP-9 was weak in both control and pathological aortas. In contrast, released MMP-7 (matrilysin) and MMP-3 (stromelysin-1) could not be detected in conditioned media but were present in tissue extracts with no detectable quantitative difference between controls and pathological aortas. Immunohistochemical staining of MMP-7 and MMP-3 revealed their retention in areas of mucoid degeneration, and semiquantitative evaluation of immunostaining showed more MMP-7 in pathological aortas than in controls. In conclusion, areas of mucoid degeneration, the hallmark of aneurysms, and dissections of thoracic ascending aortas, whatever their etiology, are not inert and can retain specific proteases. (c) 2009 Elsevier Inc. All rights reserved.
Resumo:
LipL32 is the major leptospiral outer membrane lipoprotein expressed during infection and is the immunodominant antigen recognized during the humoral immune response to leptospirosis in humans. In this study, we investigated novel aspects of LipL32. In order to define the immunodominant domains(s) of the molecule, subfragments corresponding to the N-terminal, intermediate, and C-terminal portions of the UpL32 gene were cloned and the proteins were expressed and purified by metal affinity chromatography. Our immunoblot results indicate that the C-terminal and intermediate domains of LipL32 are recognized by sera of patients with laboratory-confirmed leptospirosis. An immunoglobulin M response was detected exclusively against the LipL32 C-terminal fragment in both the acute and convalescent phases of illness. We also evaluated the capacity of LipL32 to interact with extracellular matrix (ECM) components. Dose-dependent, specific binding of LipL32 to collagen type IV and plasma fibronectin was observed, and the binding capacity could be attributed to the C-terminal portion of this molecule. Both heparin and gelatin could inhibit LipL32 binding to fibronectin in a concentration-dependent manner, indicating that the 30-kDa heparin-binding and 45-kDa gelatin-binding domains of fibronectin are involved in this interaction. Taken together, our results provide evidence that the LipL32 C terminus is recognized early in the course of infection and is the domain responsible for mediating interaction with ECM proteins.
Resumo:
Pathogenic Leptospira is the aetiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. The search for novel antigens that could be relevant in host-pathogen interactions is being pursued. These antigens have the potential to elicit several activities, including adhesion. This study focused on a hypothetical predicted lipoprotein of Leptospira, encoded by the gene LIC12895, thought to mediate attachment to extracellular matrix (ECM) components. The gene was cloned and expressed in Escherichia coli BL21 Star (DE3)pLys by using the expression vector pAE. The recombinant protein tagged with N-terminal hexahistidine was purified by metal-charged chromatography and characterized by circular dichroism spectroscopy. The capacity of the protein to mediate attachment to ECM components was evaluated by binding assays. The leptospiral protein encoded by LIC12895, named Lsa27 (leptospiral surface adhesin, 27 kDa), bound strongly to laminin in a dose-dependent and saturable fashion. Moreover, Lsa27 was recognized by antibodies from serum samples of confirmed leptospirosis specimens in both the initial and the convalescent phases of the disease. Lsa27 is most likely a surface protein of Leptospira as revealed in liquid-phase immunofluorescence assays with living organisms. Taken together, these data indicate that this newly identified membrane protein is expressed during natural infection and may play a role in mediating adhesion of L. interrogans to its host.
Resumo:
Pathogenic Leptospira species are the etiological agents of leptospirosis, a widespread disease of human and veterinary concern. In this study, we report that Leptospira species are capable of binding plasminogen (PLG) in vitro. The binding to the leptospiral surface was demonstrated by indirect immunofluorescence confocal microscopy with living bacteria. The PLG binding to the bacteria seems to occur via lysine residues because the ligation is inhibited by addition of the lysine analog 6-aminocaproic acid. Exogenously provided urokinase-type PLG activator (uPA) converts surface-bound PLG into enzymatically active plasmin, as evaluated by the reaction with the chromogenic plasmin substrate D-Val-Leu-Lys 4-nitroanilide dihydrochloridein. The PLG activation system on the surface of Leptospira is PLG dose dependent and does not cause injury to the organism, as cellular growth in culture was not impaired. The generation of active plasmin within Leptospira was observed with several nonvirulent high-passage strains and with the nonpathogenic saprophytic organism Leptospira biflexa. Statistically significant higher activation of plasmin was detected with a low-passage infectious strain of Leptospira. Plasmin-coated virulent Leptospira interrogans bacteria were capable of degrading purified extracellular matrix fibronectin. The breakdown of fibronectin was not observed with untreated bacteria. Our data provide for the first time in vitro evidence for the generation of active plasmin on the surface of Leptospira, a step that may contribute to leptospiral invasiveness.
Resumo:
In the present study, the immunoprofile of chronic sclerosing sialadenitis, also known as Kuttner tumor, was analyzed. Two,cases that occurred in the submandibular gland of male patients were submitted to immunohistochemical reactions to different antibodies. Histological examinations showed a submandibular gland exhibiting various degrees of atrophy with destruction of acini, infiltration by inflammatory cells, and periductal fibrosis. Reactions to cytokeratins (CKs) showed acini and duct remnants positive to CKs 7, 8, 19, and 13. CK14 stained myoepithelial cells around preserved acini and intercalated duct, and also basal cell of excretory ducts, but was negative in proliferating and branching ducts. Smooth muscle actin (SMA) was expressed by myofibroblasts in periductal fibrosis, and an intense expression of extracellular components was also seen. Lymphocyte markers showed, besides mature follicles, a higher presence of CD45RO positive cells. Thus, the immunoprofile of Kuttner is much more in keeping with an inflammatory-induced degenerative disease than with a preneoplastic lesion.
Resumo:
Tonsillar polyps are nonneoplastic lesions usually composed of variable amounts of lymphoid and vascular and connective tissues. All of them are generally assumed to be hamartomatous proliferations, but the profile of vascular and connective components has yet to be explored. The vascular system of the tonsils is complex and includes highly specialized structures (i.e., high endothelial venules (HEVs)) involved in lymphocyte homing into lymphoid tissues. In 14 tonsillar polyps and 26 control tonsils, an immunohistochemical study was performed using CD34 (blood vessels and HEVs), MECA-79 (HEVs), D2-40 (lymphatic vessels), Ki-67, collagens I and III, fibronectin, and tenascin-C. The polyps showed increased total lymphatic area, whereas the number of blood vessels and lymphatics and the blood vascular area did not differ significantly from those of control tonsils. Rare Ki-67+ endothelial cells were found. In the polyps, we detected, possibly for the first time, HEVs amid lymphoid tissue, and that the amount of the latter correlated positively with HEV density. The polyps also presented lesser amounts of fibronectin and collagens I and III than in normal tonsils, which were distributed in a disorganized fashion. Tenascin-C expression was uncommon in the polyps and control tonsils. Tonsillar polyps are composed of disorganized connective tissue and lymphatic channels which can be considered hamartomatous proliferations. However, the lymphoid component is possibly reactive due to its relationship with the HEVs. The highly differentiated phenotype of the HEVs and their complex biology are not in agreement with what would be expected for a component of hamartomatous nature.
Resumo:
The mechanism of interaction between Mycobacterium leprae and neural cells has not been elucidated so far. No satisfactory interpretation exists as to the bacterium tropism to the peripheral nervous system in particular. The present study is a review of the micro-physiology of the extracellular apparatus attached to Schwann cells, as well as on the description of morphological units probably involved in the process of the binding to the bacterial wall.
Resumo:
Transforming growth factor-beta (TGF-beta) is a multifunctional growth factor that has several biological effects in vivo including control of cell growth and differentiation, cell migration, lineage determination, motility, adhesion, apoptosis, and synthesis and degradation of extracellular matrix, and TGF-beta plays an important role in regulating tissue repair and regeneration. Our study analyzed the participation of TGF-beta 1, -beta 2, and -beta 3 in the different stages of morphogenesis and differentiation of human developing dental organ using immunobistochemistry. The maxillae and mandibles of 10 human embryos ranging from 8 to 23 weeks of gestation were employed, according to the approval of the ethical committee. Our study revealed that the TGF-beta subunits-beta 1, beta 2, and beta 3 were present in the various stages of tooth development, but the expression varied according to the differentiation stage, tissue, and TGF-beta subunit. Our results indicated that TGF-beta 1 is closely related to differentiation of enamel organ and initiation of matrix secretion, TGF-beta 2 to cellular differentiation, and TGF-beta 3 to mineral maturation matrix.
Resumo:
Large bone defects represent major clinical problems in the practice of reconstructive orthopedic and craniofacial surgery. The aim of this study was to examine, through immunohistochemistry approach, the involvement of MMP-9 and CD68(+) cells during tissue remodeling in response to natural hydroxyapatite (HA) implanted in rat subcutaneous tissue. Before experimentation, forty animals were randomly distributed into two experimental groups: Group-I (Gen-Ox (TM) micro-granules) and Group-II (Gen-Ox (TM) macro-granules). Afterwards, the biopsies were collected after 10, 20, 30, and 60 days post-implantation. Our results showed that at 10 days, a low-renewal foreign body type granuloma formation was observed in most of the cases. Macrophage- and fibroblast-like cells were the predominant type of cells positively stained for MMP-9 in both groups. Once macrophage-like cells seemed to be the major source of MMP9, antibody against pan-CD68 epitope was used to correlate these findings. In agreement, MMP-9 and CD68(+) cells were distributed at the periphery and the central region of the granuloma in all experimental periods, however no staining was observed in cell contacting to material. Besides macrophages, the lysosomal glycoprotein epitope recognized by CD68 antibodies can be expressed by mast cell granules and sometimes by fibroblasts. Taken together, our results suggest that xenogenic HA promotes extracellular matrix remodeling through induction of MMP-9 activity and presence of CD68(+) cells.
Resumo:
Reversion-inducing-cysteine-rich protein with Kazal motifs (RECK) is a single membrane-anchored MMP-regulator and regulates matrix metalloproteinases (MMP) 2, 9 and 14. In turn, MMPs are endopeptidases that play a pivotal role in remodeling ECM. In this work, we decided to evaluate expression pattern of RECK in growing rat incisor during, specifically focusing out amelogenesis process. Based on different kinds of ameloblasts, our results showed that RECK expression was conducted by secretory and post-secretory ameloblasts. At the secretory phase, RECK was localized in the infra-nuclear region of the ameloblast, outer epithelium, near blood vessels, and in the stellate reticulum. From the transition to the maturation phases, RECK was strongly expressed by non-epithelial immuno-competent cells (macrophages and/or dendritic-like cells) in the papillary layer. From the transition to the maturation stage, RECK expression was increased. RECK mRNA was amplified by RT-PCR from whole enamel organ. Here, we verified the presence of RECK mRNA during all stages of amelogenesis. These events were governed by ameloblasts and by non-epithelial cells residents in the enamel organ. Concluding, we found differential expression of MMPs-2, -9 and RECK in the different phases of amelogenesis, suggesting that the tissue remodeling is rigorously controlled during dental mineralization.
Resumo:
The bone formation executed by osteoblasts represents an interesting research field both for basic and applied investigations. The goal of this work was to evaluate the molecular mechanisms involved during osteoblast differentiation in vitro. Accordingly, we demonstrated that, during the osteoblastic differentiation, TIMP-2 and RECK presented differential expressions, where RECK expression was downregulated from the 14th day in contrast with an increase in TIMP-2. Concomitantly, our results showed a temporal regulation of two major signaling cascades during osteoblast differentiation: proliferation cascades in which RECK, PI3 K, and GSK-3 beta play a pivotal role and latter, differentiation cascades with participation of Ras, Rho, Rac-1, PKC alpha/beta, and TIMP-2. Furthermore, we observed that phosphorylation level of paxillin was downregulated while FAK(125) remained unchangeable, but active during extracellular matrix (ECM) remodeling. Concluding, our results provide evidences that RECK and TIMP-2 are involved in the control of ECM remodeling in distinct phases of osteoblast differentiation by modulating MMP activities and a multitude of signaling proteins governs these events.