483 resultados para Essex Junior (Sloop)
Resumo:
It is well known that carbohydrate (CHO) supplementation can improve performance in endurance exercises through several mechanisms such as maintenance of glycemia and sparing endogenous glycogen as well as the possibility of a central nervous-system action. Some studies have emerged in recent years in order to test the hypothesis of ergogenic action via central nervous system. Recent studies have demonstrated that CHO mouth rinse can lead to improved performance of cyclists, and this may be associated with the activation of brain areas linked to motivation and reward. These findings have already been replicated in other endurance modalities, such as running. This alternative seems to be an attractive nutritional tool to improve endurance exercise performance.
Resumo:
Background: The effects of chronic aerobic exercise upon lipid profile has been previously demonstrated, but few studies showed this effect under resistance exercise conditions. Objective: The aim of this study was to examine the effects of different resistance exercise loads on blood lipids. Methods: Thirty healthy, untrained male volunteers were allocated randomly into four groups based at different percentages of one repetition maximum (1 RM); 50%-1 RM, 75%-1 RM, 90%-1 RM, and 110%-1 RM. The total volume (sets x reps x load) of the exercise was equalized. The lipid profile (Triglycerides [TG], HDL-cholesterol [HDL-c], LDL-cholesterol, and Total cholesterol) was determined at rest and after 1, 24, 48 and 72 h of resistance exercise. Results: The 75%-1 RM group demonstrated greater TG reduction when compared to other groups (p < 0.05). Additionally, the 110%-1 RM group presented an increased TG concentration when compared to 50% and 75% groups (p = 0.01, p = 0.01, respectively). HDL-c concentration was significantly greater after resistance exercise in 50%-1 RM and 75%-1 RM when compared to 110%-1 RM group (p = 0.004 and p = 0.03, respectively). Accordingly, the 50%-1 RM group had greater HDL-c concentration than 110%-1 RM group after 48 h (p = 0.05) and 72 h (p = 0.004), respectively. Finally, The 50% group has showed lesser LDL-c concentration than 110% group after 24 h (p = 0.007). No significant difference was found in Total Cholesterol concentrations. Conclusion: These results indicate that the acute resistance exercise may induce changes in lipid profile in a specific-intensity manner. Overall, low and moderate exercise intensities appear to be promoting more benefits on lipid profile than high intensity. Long term studies should confirm these findings.
Resumo:
Objective: Although some scientific information on electronic body protectors in taekwondo is available, no research has been done to assess the impact of kicks in a competitive situation. The purpose of this study, then, was to assess the energy absorbed by these protectors from kicks performed in an actual taekwondo competition. Methods: Subjects consisted of junior (14-17 years) and senior (>= 18 years) male taekwondo-in, who participated in an open tournament. Data on the energy imparted by valid kicks in Joules (1) were collected from a public visual electronic monitor. Results: Energy was higher for the seniors: 264.31 +/- 56.63 J versus 224.38 +/- 48.23 J for the juniors (eta(2) = 0.121). The seniors scored lower in percent impact but the effect was trivial: 123.46 +/- 24.77% versus 136.70 +/- 26.33% (eta(2) = 0.087). Conclusions: The difference between senior and junior taekwondo-in in absolute energy generated was small, while the difference in relative energy impact was trivial in favour of the junior taekwondo athletes.
Resumo:
Background: The effects of creatine (CR) supplementation on glycogen content are still debatable. Thus, due to the current lack of clarity, we investigated the effects of CR supplementation on muscle glycogen content after high intensity intermittent exercise in rats. Methods: First, the animals were submitted to a high intensity intermittent maximal swimming exercise protocol to ensure that CR-supplementation was able to delay fatigue ( experiment 1). Then, the CR-mediated glycogen sparing effect was examined using a high intensity intermittent sub-maximal exercise test ( fixed number of bouts; six bouts of 30-second duration interspersed by two-minute rest interval) ( experiment 2). For both experiments, male Wistar rats were given either CR supplementation or placebo (Pl) for 5 days. Results: As expected, CR-supplemented animals were able to exercise for a significant higher number of bouts than Pl. Experiment 2 revealed a higher gastrocnemius glycogen content for the CR vs. the Pl group (33.59%). Additionally, CR animals presented lower blood lactate concentrations throughout the intermittent exercise bouts compared to Pl. No difference was found between groups in soleus glycogen content. Conclusion: The major finding of this study is that CR supplementation was able to spare muscle glycogen during a high intensity intermittent exercise in rats.
Resumo:
This paper proposes an architecture for machining process and production monitoring to be applied in machine tools with open Computer numerical control (CNC). A brief description of the advantages of using open CNC for machining process and production monitoring is presented with an emphasis on the CNC architecture using a personal computer (PC)-based human-machine interface. The proposed architecture uses the CNC data and sensors to gather information about the machining process and production. It allows the development of different levels of monitoring systems with mininium investment, minimum need for sensor installation, and low intrusiveness to the process. Successful examples of the utilization of this architecture in a laboratory environment are briefly described. As a Conclusion, it is shown that a wide range of monitoring solutions can be implemented in production processes using the proposed architecture.
Resumo:
A considerable portion of Brazil's commercial eucalypt plantations is located in areas Subjected to periods of water deficit and grown in soils with low natural fertility, particularly poor In potassium. Potassium is influential in controlling water relations of plants. The objective of this study was to verify the influence of potassium fertilization and soil water potential (psi(w)) oil the dry matter production and oil water relations Of eucalypt seedlings grown under greenhouse conditions. the experimental units were arranged in 4x4x2 randomized blocks factorial design, as follow: four species of Eucalyptus (Eucalyptus grandis, Eucalyptus urophylla, Eucalyptus camaldulensis and hybrid Eucalyptus grandis x Eucalyptus urophylla), four dosages of K (0, 50, 100 and 200 mg dm(-3)) and two soil water potentials (-0.01 M Pa and -0.1 M Pa). Plastic containers with 15 cm diameter and 18 cm height, with Styrofoam base, containing 3.0 dm(3) of soil and two plants per container were used. Soil water potential was kept at -0.01 MPa for 40 days after seeding. Afterward, the experimental units were divided into two groups: in one group the potential was kept at 0.01 MPa, and in the other one, at -0.10 MPa. Sol I water potential was control led gravimetrically twice a day with water replacement until the desired potential was reestablished. A week before harvesting, the leaf water potential (psi), the photosynthetic rate (A), the stomatal conductance (gs) and the transpiration rate were evaluated. The last week before harvesting, the mass of the containers was recorded daily before watering to determine the consumption of water by the plants. After harvesting, total dry matter and leaf area were evaluated. the data were Submitted to analysis of variance, to Tukey's tests and regression analyses. The application of K influenced A, gs and the transpiration rate. Plants deficient in K showed lower A and higher Us and transpiration rates. There were no statistical differences in A, gs and transpiration rates ill plants with and Without water deficit. The addition of K reduced the consumption of water per unit of leaf area and, in general, plants submitted to water deficit presented a lower consumption of water.
Resumo:
The use of fertilization in forest stands results in yield gains, yet little attention has been directed to its potential effects on the quality of wood produced. Information is scarce about the effect of fertilization on anatomical structures of older Eucalyptus wood. This work aims to study the effect of fertilization on tissue cell size of wood from an Eucalyptus grandis stand at age 21 years, the management system of which is based on selective thinning and fertilizer application at the start of the thinning season. Factors to consider include: presence or absence of fertilizers, two log positions and five radial (pith to bark) positions. Results led to the conclusion that fertilization significantly influenced only vessel frequency. Vessel element length was influenced by tree height. Fiber length, fiber diameter, fiber wall thickness, vessel element length, vessel diameter and vessel frequency were influenced by the radial position of the sample in relation to the log. A positive correlation was observed between fiber length, fiber diameter, fiber wall thickness, vessel element length, vessel diameter, ray width and radial position, while a negative correlation was observed between ray frequency and radial position.
Resumo:
This work evaluated the wood anatomical and physical characteristics of 24 months-old Eucalyptus grandis trees, planted in 3x2m spacing and fertilized with nitrogen (6, 12, 18 month old) and sewage sludge (planting, 8 month old). For each treatment 10 eucalypts trees were cut according to the distribution of basal area. Wood samples were collected in different percentages of the total height to analyze the anatomical (vessels and fibers) and physical (wood density) characteristics. The results showed that the wood apparent density and wood basic density of the eucalypt trees in the nitrogen and sewage sludge were larger in comparison to the control. Radial profiles of wood apparent density, were similar in the three treatments, presenting the exected characteristics of juvenile wood of 24 months-old eucalypt trees. Fiber and vessel dimensions were not affected by fertilization.
Resumo:
QTL mapping provides usefull information for breeding programs since it allows the estimation of genomic locations and genetic effects of chromossomal regions related to the expression of quantitative traits. The objective of this study was to map QTL related to several agronomic important traits associated with grain yield: ear weight (EW), prolificacy (PROL), ear number (NE), ear length (EL) and diameter (ED), number of rows on the ear (NRE) and number of kernels per row on the ear (NKPR). Four hundred F-2:3 tropical maize progenies were evaluated in five environments in Piracicaba, Sao Paulo, Brazil. The genetic map was previously estimated and had 117 microssatelite loci with average distance of 14 cM. Data was analysed using Composite Interval Mapping for each trait. Thirty six QTL were mapped and related to the expression of EW (2), PROL (3), NE (2), EL (5), ED (5), NRE (10), NKPR (5). Few QTL were mapped since there was high GxE interaction. Traits EW, PROL and EN showed high genetic correlation with grain yield and several QTL mapped to similar genomic regions, which could cause the observed correlation. However, further analysis using apropriate statistical models are required to separate linked versus pleiotropic QTL. Five QTL (named Ew1, Ne1, Ed3, Nre3 and Nre10) had high genetic effects, explaining from 10.8% (Nre3) to 16.9% (Nre10) of the phenotypic variance, and could be considered in further studies.
Resumo:
Background: High-throughput SNP genotyping has become an essential requirement for molecular breeding and population genomics studies in plant species. Large scale SNP developments have been reported for several mainstream crops. A growing interest now exists to expand the speed and resolution of genetic analysis to outbred species with highly heterozygous genomes. When nucleotide diversity is high, a refined diagnosis of the target SNP sequence context is needed to convert queried SNPs into high-quality genotypes using the Golden Gate Genotyping Technology (GGGT). This issue becomes exacerbated when attempting to transfer SNPs across species, a scarcely explored topic in plants, and likely to become significant for population genomics and inter specific breeding applications in less domesticated and less funded plant genera. Results: We have successfully developed the first set of 768 SNPs assayed by the GGGT for the highly heterozygous genome of Eucalyptus from a mixed Sanger/454 database with 1,164,695 ESTs and the preliminary 4.5X draft genome sequence for E. grandis. A systematic assessment of in silico SNP filtering requirements showed that stringent constraints on the SNP surrounding sequences have a significant impact on SNP genotyping performance and polymorphism. SNP assay success was high for the 288 SNPs selected with more rigorous in silico constraints; 93% of them provided high quality genotype calls and 71% of them were polymorphic in a diverse panel of 96 individuals of five different species. SNP reliability was high across nine Eucalyptus species belonging to three sections within subgenus Symphomyrtus and still satisfactory across species of two additional subgenera, although polymorphism declined as phylogenetic distance increased. Conclusions: This study indicates that the GGGT performs well both within and across species of Eucalyptus notwithstanding its nucleotide diversity >= 2%. The development of a much larger array of informative SNPs across multiple Eucalyptus species is feasible, although strongly dependent on having a representative and sufficiently deep collection of sequences from many individuals of each target species. A higher density SNP platform will be instrumental to undertake genome-wide phylogenetic and population genomics studies and to implement molecular breeding by Genomic Selection in Eucalyptus.
Resumo:
Background: The post-genomic era has brought new challenges regarding the understanding of the organization and function of the human genome. Many of these challenges are centered on the meaning of differential gene regulation under distinct biological conditions and can be performed by analyzing the Multiple Differential Expression (MDE) of genes associated with normal and abnormal biological processes. Currently MDE analyses are limited to usual methods of differential expression initially designed for paired analysis. Results: We proposed a web platform named ProbFAST for MDE analysis which uses Bayesian inference to identify key genes that are intuitively prioritized by means of probabilities. A simulated study revealed that our method gives a better performance when compared to other approaches and when applied to public expression data, we demonstrated its flexibility to obtain relevant genes biologically associated with normal and abnormal biological processes. Conclusions: ProbFAST is a free accessible web-based application that enables MDE analysis on a global scale. It offers an efficient methodological approach for MDE analysis of a set of genes that are turned on and off related to functional information during the evolution of a tumor or tissue differentiation. ProbFAST server can be accessed at http://gdm.fmrp.usp.br/probfast.
Resumo:
Background: Reactive oxygen species have been implicated in the physiopathogenesis of hypertensive end-organ damage. This study investigated the impact of the C242T polymorphism of the p22-phox gene (CYBA) on left ventricular structure in Brazilian hypertensive subjects. Methods: We cross-sectionally evaluated 561 patients from 2 independent centers [Campinas (n = 441) and Vitoria (n = 120)] by clinical history, physical examination, anthropometry, analysis of metabolic and echocardiography parameters as well as p22-phox C242T polymorphism genotyping. In addition, NADPH-oxidase activity was quantified in peripheral mononuclear cells from a subgroup of Campinas sample. Results: Genotype frequencies in both samples were consistent with the Hardy-Weinberg equilibrium. Subjects with the T allele presented higher left ventricular mass/height(2.7) than those carrying the CC genotype in Campinas (76.8 +/- 1.6 vs 70.9 +/- 1.4 g/m(2.7); p = 0.009), and in Vitoria (45.6 +/- 1.9 vs 39.9 +/- 1.4 g/m(2.7); p = 0.023) samples. These results were confirmed by stepwise regression analyses adjusted for age, gender, blood pressure, metabolic variables and use of anti-hypertensive medications. In addition, increased NADPH-oxidase activity was detected in peripheral mononuclear cells from T allele carriers compared with CC genotype carriers (p = 0.03). Conclusions: The T allele of the p22-phox C242T polymorphism is associated with higher left ventricular mass/height(2.7) and increased NADPH-oxidase activity in Brazilian hypertensive patients. These data suggest that genetic variation within NADPH-oxidase components may modulate left ventricular remodeling in subjects with systemic hypertension.
Resumo:
Despite recent advances, patients with malignant brain tumors still have a poor prognosis. Glioblastoma (WHO grade 4 astrocytoma), the most malignant brain tumor, represents 50% of all astrocytomas, with a median survival rate of <1 year. It is, therefore, extremely important to search for new diagnostic and therapeutic approaches for patients with glioblastoma. This study describes the application of superparamagnetic nano-particles of iron oxide, as well as monoclonal antibodies, of immunophenotypic significance, conjoined to quantum dots for the ultrastructural assessment of glioblastoma cells. For this proposal, an immunophenotypic study by flow cytometry was carried out, followed by transmission electron microscopy analysis. The process of tumor cell labeling using nanoparticles can successfully contribute to the identification of tumorigenic cells and consequently for better understanding of glioblastoma genesis and recurrence. In addition, this method may help further studies in tumor imaging, diagnosis, and prognostic markers detection.
Resumo:
Background Associations between aplastic anemia and numerous drugs, pesticides and chemicals have been reported. However, at least 50% of the etiology of aplastic anemia remains unexplained. Design and Methods This was a case-control, multicenter, multinational study, designed to identify risk factors for agranulocytosis and aplastic anemia. The cases were patients with diagnosis of aplastic anemia confirmed through biopsy or bone marrow aspiration, selected through an active search of clinical laboratories, hematology clinics and medical records. The controls did not have either aplastic anemia or chronic diseases. A total of 224 patients with aplastic anemia were included in the study, each case was paired with four controls, according to sex, age group, and hospital where the case was first seen. Information was collected on demographic data, medical history, laboratory tests, medications, and other potential risk factors prior to diagnosis. Results The incidence of aplastic anemia was 1.6 cases per million per year. Higher rates of benzene exposure (>= 30 exposures per year) were associated with a greater risk of aplastic anemia (odds ratio, OR: 4.2; 95% confidence interval, CI: 1.82-9.82). Individuals exposed to chloramphenicol in the previous year had an adjusted OR for aplastic anemia of 8.7 (CI: 0.87-87.93) and those exposed to azithromycin had an adjusted OR of 11.02 (CI 1.14-108.02). Conclusions The incidence of aplastic anemia in Latin America countries is low. Although the research study centers had a high coverage of health services, the underreporting of cases of aplastic anemia in selected regions can be discussed. Frequent exposure to benzene-based products increases the risk for aplastic anemia. Few associations with specific drugs were found, and it is likely that some of these were due to chance alone.
Resumo:
Adipose tissue-derived stem cells (ASCs) are among the more attractive adult stem cell options for potential therapeutic applications. Here, we studied and compared the basic biological characteristics of ASCs isolated from humans (hASCs) and mice (mASCs) and maintained in identical culture conditions, which must be examined prior to considering further potential clinical applications. hASCs and mASCs were compared for immunophenotype, differentiation potential, cell growth characteristics, senescence, nuclear morphology, and DNA content. Although both strains of ASCs displayed a similar immunophenotype, the percentage of CD73(+) cells was markedly lower and CD31(+) was higher in mASC than in hASC cultures. The mean population doubling time was 98.08 +/- 6.15 h for hASCs and 52.58 +/- 3.74 h for mASCs. The frequency of nuclear aberrations was noticeably lower in hASCs than in mASCs regardless of the passage number. Moreover, as the cells went through several in vitro passages, mASCs showed changes in DNA content and cell cycle kinetics (frequency of hypodiploid, G0/G1, G2/M, and hyperdiploid cells), whereas all of these parameters remained constant in hASCs. Collectively, these results suggest that mASCs display higher proliferative capacity and are more unstable than hASCs in long-term cultures. These results underscore the need to consider specificities among model systems that may influence outcomes when designing potential human applications.